Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

54=x^{2}-4x+4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4=54
Swap sides so that all variable terms are on the left hand side.
x^{2}-4x+4-54=0
Subtract 54 from both sides.
x^{2}-4x-50=0
Subtract 54 from 4 to get -50.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-50\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and -50 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-50\right)}}{2}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+200}}{2}
Multiply -4 times -50.
x=\frac{-\left(-4\right)±\sqrt{216}}{2}
Add 16 to 200.
x=\frac{-\left(-4\right)±6\sqrt{6}}{2}
Take the square root of 216.
x=\frac{4±6\sqrt{6}}{2}
The opposite of -4 is 4.
x=\frac{6\sqrt{6}+4}{2}
Now solve the equation x=\frac{4±6\sqrt{6}}{2} when ± is plus. Add 4 to 6\sqrt{6}.
x=3\sqrt{6}+2
Divide 4+6\sqrt{6} by 2.
x=\frac{4-6\sqrt{6}}{2}
Now solve the equation x=\frac{4±6\sqrt{6}}{2} when ± is minus. Subtract 6\sqrt{6} from 4.
x=2-3\sqrt{6}
Divide 4-6\sqrt{6} by 2.
x=3\sqrt{6}+2 x=2-3\sqrt{6}
The equation is now solved.
54=x^{2}-4x+4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4=54
Swap sides so that all variable terms are on the left hand side.
\left(x-2\right)^{2}=54
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{54}
Take the square root of both sides of the equation.
x-2=3\sqrt{6} x-2=-3\sqrt{6}
Simplify.
x=3\sqrt{6}+2 x=2-3\sqrt{6}
Add 2 to both sides of the equation.