Solve for n
n=-3
n=12
Share
Copied to clipboard
54\times 2=\left(2\left(-12\right)+\left(n-1\right)\times 3\right)n
Multiply both sides by 2.
108=\left(2\left(-12\right)+\left(n-1\right)\times 3\right)n
Multiply 54 and 2 to get 108.
108=\left(-24+\left(n-1\right)\times 3\right)n
Multiply 2 and -12 to get -24.
108=\left(-24+3n-3\right)n
Use the distributive property to multiply n-1 by 3.
108=\left(-27+3n\right)n
Subtract 3 from -24 to get -27.
108=-27n+3n^{2}
Use the distributive property to multiply -27+3n by n.
-27n+3n^{2}=108
Swap sides so that all variable terms are on the left hand side.
-27n+3n^{2}-108=0
Subtract 108 from both sides.
3n^{2}-27n-108=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-\left(-27\right)±\sqrt{\left(-27\right)^{2}-4\times 3\left(-108\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -27 for b, and -108 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-27\right)±\sqrt{729-4\times 3\left(-108\right)}}{2\times 3}
Square -27.
n=\frac{-\left(-27\right)±\sqrt{729-12\left(-108\right)}}{2\times 3}
Multiply -4 times 3.
n=\frac{-\left(-27\right)±\sqrt{729+1296}}{2\times 3}
Multiply -12 times -108.
n=\frac{-\left(-27\right)±\sqrt{2025}}{2\times 3}
Add 729 to 1296.
n=\frac{-\left(-27\right)±45}{2\times 3}
Take the square root of 2025.
n=\frac{27±45}{2\times 3}
The opposite of -27 is 27.
n=\frac{27±45}{6}
Multiply 2 times 3.
n=\frac{72}{6}
Now solve the equation n=\frac{27±45}{6} when ± is plus. Add 27 to 45.
n=12
Divide 72 by 6.
n=-\frac{18}{6}
Now solve the equation n=\frac{27±45}{6} when ± is minus. Subtract 45 from 27.
n=-3
Divide -18 by 6.
n=12 n=-3
The equation is now solved.
54\times 2=\left(2\left(-12\right)+\left(n-1\right)\times 3\right)n
Multiply both sides by 2.
108=\left(2\left(-12\right)+\left(n-1\right)\times 3\right)n
Multiply 54 and 2 to get 108.
108=\left(-24+\left(n-1\right)\times 3\right)n
Multiply 2 and -12 to get -24.
108=\left(-24+3n-3\right)n
Use the distributive property to multiply n-1 by 3.
108=\left(-27+3n\right)n
Subtract 3 from -24 to get -27.
108=-27n+3n^{2}
Use the distributive property to multiply -27+3n by n.
-27n+3n^{2}=108
Swap sides so that all variable terms are on the left hand side.
3n^{2}-27n=108
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3n^{2}-27n}{3}=\frac{108}{3}
Divide both sides by 3.
n^{2}+\left(-\frac{27}{3}\right)n=\frac{108}{3}
Dividing by 3 undoes the multiplication by 3.
n^{2}-9n=\frac{108}{3}
Divide -27 by 3.
n^{2}-9n=36
Divide 108 by 3.
n^{2}-9n+\left(-\frac{9}{2}\right)^{2}=36+\left(-\frac{9}{2}\right)^{2}
Divide -9, the coefficient of the x term, by 2 to get -\frac{9}{2}. Then add the square of -\frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-9n+\frac{81}{4}=36+\frac{81}{4}
Square -\frac{9}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}-9n+\frac{81}{4}=\frac{225}{4}
Add 36 to \frac{81}{4}.
\left(n-\frac{9}{2}\right)^{2}=\frac{225}{4}
Factor n^{2}-9n+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{9}{2}\right)^{2}}=\sqrt{\frac{225}{4}}
Take the square root of both sides of the equation.
n-\frac{9}{2}=\frac{15}{2} n-\frac{9}{2}=-\frac{15}{2}
Simplify.
n=12 n=-3
Add \frac{9}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}