Evaluate
\frac{537}{64}=8.390625
Factor
\frac{3 \cdot 179}{2 ^ {6}} = 8\frac{25}{64} = 8.390625
Share
Copied to clipboard
\begin{array}{l}\phantom{64)}\phantom{1}\\64\overline{)537}\\\end{array}
Use the 1^{st} digit 5 from dividend 537
\begin{array}{l}\phantom{64)}0\phantom{2}\\64\overline{)537}\\\end{array}
Since 5 is less than 64, use the next digit 3 from dividend 537 and add 0 to the quotient
\begin{array}{l}\phantom{64)}0\phantom{3}\\64\overline{)537}\\\end{array}
Use the 2^{nd} digit 3 from dividend 537
\begin{array}{l}\phantom{64)}00\phantom{4}\\64\overline{)537}\\\end{array}
Since 53 is less than 64, use the next digit 7 from dividend 537 and add 0 to the quotient
\begin{array}{l}\phantom{64)}00\phantom{5}\\64\overline{)537}\\\end{array}
Use the 3^{rd} digit 7 from dividend 537
\begin{array}{l}\phantom{64)}008\phantom{6}\\64\overline{)537}\\\phantom{64)}\underline{\phantom{}512\phantom{}}\\\phantom{64)9}25\\\end{array}
Find closest multiple of 64 to 537. We see that 8 \times 64 = 512 is the nearest. Now subtract 512 from 537 to get reminder 25. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }25
Since 25 is less than 64, stop the division. The reminder is 25. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}