Evaluate
\frac{536}{73}\approx 7.342465753
Factor
\frac{2 ^ {3} \cdot 67}{73} = 7\frac{25}{73} = 7.342465753424658
Share
Copied to clipboard
\begin{array}{l}\phantom{73)}\phantom{1}\\73\overline{)536}\\\end{array}
Use the 1^{st} digit 5 from dividend 536
\begin{array}{l}\phantom{73)}0\phantom{2}\\73\overline{)536}\\\end{array}
Since 5 is less than 73, use the next digit 3 from dividend 536 and add 0 to the quotient
\begin{array}{l}\phantom{73)}0\phantom{3}\\73\overline{)536}\\\end{array}
Use the 2^{nd} digit 3 from dividend 536
\begin{array}{l}\phantom{73)}00\phantom{4}\\73\overline{)536}\\\end{array}
Since 53 is less than 73, use the next digit 6 from dividend 536 and add 0 to the quotient
\begin{array}{l}\phantom{73)}00\phantom{5}\\73\overline{)536}\\\end{array}
Use the 3^{rd} digit 6 from dividend 536
\begin{array}{l}\phantom{73)}007\phantom{6}\\73\overline{)536}\\\phantom{73)}\underline{\phantom{}511\phantom{}}\\\phantom{73)9}25\\\end{array}
Find closest multiple of 73 to 536. We see that 7 \times 73 = 511 is the nearest. Now subtract 511 from 536 to get reminder 25. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }25
Since 25 is less than 73, stop the division. The reminder is 25. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}