Evaluate
\frac{53489}{25}=2139.56
Factor
\frac{89 \cdot 601}{5 ^ {2}} = 2139\frac{14}{25} = 2139.56
Share
Copied to clipboard
\begin{array}{l}\phantom{25)}\phantom{1}\\25\overline{)53489}\\\end{array}
Use the 1^{st} digit 5 from dividend 53489
\begin{array}{l}\phantom{25)}0\phantom{2}\\25\overline{)53489}\\\end{array}
Since 5 is less than 25, use the next digit 3 from dividend 53489 and add 0 to the quotient
\begin{array}{l}\phantom{25)}0\phantom{3}\\25\overline{)53489}\\\end{array}
Use the 2^{nd} digit 3 from dividend 53489
\begin{array}{l}\phantom{25)}02\phantom{4}\\25\overline{)53489}\\\phantom{25)}\underline{\phantom{}50\phantom{999}}\\\phantom{25)9}3\\\end{array}
Find closest multiple of 25 to 53. We see that 2 \times 25 = 50 is the nearest. Now subtract 50 from 53 to get reminder 3. Add 2 to quotient.
\begin{array}{l}\phantom{25)}02\phantom{5}\\25\overline{)53489}\\\phantom{25)}\underline{\phantom{}50\phantom{999}}\\\phantom{25)9}34\\\end{array}
Use the 3^{rd} digit 4 from dividend 53489
\begin{array}{l}\phantom{25)}021\phantom{6}\\25\overline{)53489}\\\phantom{25)}\underline{\phantom{}50\phantom{999}}\\\phantom{25)9}34\\\phantom{25)}\underline{\phantom{9}25\phantom{99}}\\\phantom{25)99}9\\\end{array}
Find closest multiple of 25 to 34. We see that 1 \times 25 = 25 is the nearest. Now subtract 25 from 34 to get reminder 9. Add 1 to quotient.
\begin{array}{l}\phantom{25)}021\phantom{7}\\25\overline{)53489}\\\phantom{25)}\underline{\phantom{}50\phantom{999}}\\\phantom{25)9}34\\\phantom{25)}\underline{\phantom{9}25\phantom{99}}\\\phantom{25)99}98\\\end{array}
Use the 4^{th} digit 8 from dividend 53489
\begin{array}{l}\phantom{25)}0213\phantom{8}\\25\overline{)53489}\\\phantom{25)}\underline{\phantom{}50\phantom{999}}\\\phantom{25)9}34\\\phantom{25)}\underline{\phantom{9}25\phantom{99}}\\\phantom{25)99}98\\\phantom{25)}\underline{\phantom{99}75\phantom{9}}\\\phantom{25)99}23\\\end{array}
Find closest multiple of 25 to 98. We see that 3 \times 25 = 75 is the nearest. Now subtract 75 from 98 to get reminder 23. Add 3 to quotient.
\begin{array}{l}\phantom{25)}0213\phantom{9}\\25\overline{)53489}\\\phantom{25)}\underline{\phantom{}50\phantom{999}}\\\phantom{25)9}34\\\phantom{25)}\underline{\phantom{9}25\phantom{99}}\\\phantom{25)99}98\\\phantom{25)}\underline{\phantom{99}75\phantom{9}}\\\phantom{25)99}239\\\end{array}
Use the 5^{th} digit 9 from dividend 53489
\begin{array}{l}\phantom{25)}02139\phantom{10}\\25\overline{)53489}\\\phantom{25)}\underline{\phantom{}50\phantom{999}}\\\phantom{25)9}34\\\phantom{25)}\underline{\phantom{9}25\phantom{99}}\\\phantom{25)99}98\\\phantom{25)}\underline{\phantom{99}75\phantom{9}}\\\phantom{25)99}239\\\phantom{25)}\underline{\phantom{99}225\phantom{}}\\\phantom{25)999}14\\\end{array}
Find closest multiple of 25 to 239. We see that 9 \times 25 = 225 is the nearest. Now subtract 225 from 239 to get reminder 14. Add 9 to quotient.
\text{Quotient: }2139 \text{Reminder: }14
Since 14 is less than 25, stop the division. The reminder is 14. The topmost line 02139 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2139.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}