Evaluate
\frac{5329}{5120}=1.040820312
Factor
\frac{73 ^ {2}}{2 ^ {10} \cdot 5} = 1\frac{209}{5120} = 1.0408203125
Share
Copied to clipboard
\begin{array}{l}\phantom{5120)}\phantom{1}\\5120\overline{)5329}\\\end{array}
Use the 1^{st} digit 5 from dividend 5329
\begin{array}{l}\phantom{5120)}0\phantom{2}\\5120\overline{)5329}\\\end{array}
Since 5 is less than 5120, use the next digit 3 from dividend 5329 and add 0 to the quotient
\begin{array}{l}\phantom{5120)}0\phantom{3}\\5120\overline{)5329}\\\end{array}
Use the 2^{nd} digit 3 from dividend 5329
\begin{array}{l}\phantom{5120)}00\phantom{4}\\5120\overline{)5329}\\\end{array}
Since 53 is less than 5120, use the next digit 2 from dividend 5329 and add 0 to the quotient
\begin{array}{l}\phantom{5120)}00\phantom{5}\\5120\overline{)5329}\\\end{array}
Use the 3^{rd} digit 2 from dividend 5329
\begin{array}{l}\phantom{5120)}000\phantom{6}\\5120\overline{)5329}\\\end{array}
Since 532 is less than 5120, use the next digit 9 from dividend 5329 and add 0 to the quotient
\begin{array}{l}\phantom{5120)}000\phantom{7}\\5120\overline{)5329}\\\end{array}
Use the 4^{th} digit 9 from dividend 5329
\begin{array}{l}\phantom{5120)}0001\phantom{8}\\5120\overline{)5329}\\\phantom{5120)}\underline{\phantom{}5120\phantom{}}\\\phantom{5120)9}209\\\end{array}
Find closest multiple of 5120 to 5329. We see that 1 \times 5120 = 5120 is the nearest. Now subtract 5120 from 5329 to get reminder 209. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }209
Since 209 is less than 5120, stop the division. The reminder is 209. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}