Solve for x (complex solution)
x=59+\sqrt{59}i\approx 59+7.681145748i
x=-\sqrt{59}i+59\approx 59-7.681145748i
Graph
Share
Copied to clipboard
5310\times 2=x\left(354-3x\right)
Multiply both sides by 2.
10620=x\left(354-3x\right)
Multiply 5310 and 2 to get 10620.
10620=354x-3x^{2}
Use the distributive property to multiply x by 354-3x.
354x-3x^{2}=10620
Swap sides so that all variable terms are on the left hand side.
354x-3x^{2}-10620=0
Subtract 10620 from both sides.
-3x^{2}+354x-10620=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-354±\sqrt{354^{2}-4\left(-3\right)\left(-10620\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 354 for b, and -10620 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-354±\sqrt{125316-4\left(-3\right)\left(-10620\right)}}{2\left(-3\right)}
Square 354.
x=\frac{-354±\sqrt{125316+12\left(-10620\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-354±\sqrt{125316-127440}}{2\left(-3\right)}
Multiply 12 times -10620.
x=\frac{-354±\sqrt{-2124}}{2\left(-3\right)}
Add 125316 to -127440.
x=\frac{-354±6\sqrt{59}i}{2\left(-3\right)}
Take the square root of -2124.
x=\frac{-354±6\sqrt{59}i}{-6}
Multiply 2 times -3.
x=\frac{-354+6\sqrt{59}i}{-6}
Now solve the equation x=\frac{-354±6\sqrt{59}i}{-6} when ± is plus. Add -354 to 6i\sqrt{59}.
x=-\sqrt{59}i+59
Divide -354+6i\sqrt{59} by -6.
x=\frac{-6\sqrt{59}i-354}{-6}
Now solve the equation x=\frac{-354±6\sqrt{59}i}{-6} when ± is minus. Subtract 6i\sqrt{59} from -354.
x=59+\sqrt{59}i
Divide -354-6i\sqrt{59} by -6.
x=-\sqrt{59}i+59 x=59+\sqrt{59}i
The equation is now solved.
5310\times 2=x\left(354-3x\right)
Multiply both sides by 2.
10620=x\left(354-3x\right)
Multiply 5310 and 2 to get 10620.
10620=354x-3x^{2}
Use the distributive property to multiply x by 354-3x.
354x-3x^{2}=10620
Swap sides so that all variable terms are on the left hand side.
-3x^{2}+354x=10620
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+354x}{-3}=\frac{10620}{-3}
Divide both sides by -3.
x^{2}+\frac{354}{-3}x=\frac{10620}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-118x=\frac{10620}{-3}
Divide 354 by -3.
x^{2}-118x=-3540
Divide 10620 by -3.
x^{2}-118x+\left(-59\right)^{2}=-3540+\left(-59\right)^{2}
Divide -118, the coefficient of the x term, by 2 to get -59. Then add the square of -59 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-118x+3481=-3540+3481
Square -59.
x^{2}-118x+3481=-59
Add -3540 to 3481.
\left(x-59\right)^{2}=-59
Factor x^{2}-118x+3481. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-59\right)^{2}}=\sqrt{-59}
Take the square root of both sides of the equation.
x-59=\sqrt{59}i x-59=-\sqrt{59}i
Simplify.
x=59+\sqrt{59}i x=-\sqrt{59}i+59
Add 59 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}