Evaluate
\frac{106}{9}\approx 11.777777778
Factor
\frac{2 \cdot 53}{3 ^ {2}} = 11\frac{7}{9} = 11.777777777777779
Share
Copied to clipboard
\begin{array}{l}\phantom{45)}\phantom{1}\\45\overline{)530}\\\end{array}
Use the 1^{st} digit 5 from dividend 530
\begin{array}{l}\phantom{45)}0\phantom{2}\\45\overline{)530}\\\end{array}
Since 5 is less than 45, use the next digit 3 from dividend 530 and add 0 to the quotient
\begin{array}{l}\phantom{45)}0\phantom{3}\\45\overline{)530}\\\end{array}
Use the 2^{nd} digit 3 from dividend 530
\begin{array}{l}\phantom{45)}01\phantom{4}\\45\overline{)530}\\\phantom{45)}\underline{\phantom{}45\phantom{9}}\\\phantom{45)9}8\\\end{array}
Find closest multiple of 45 to 53. We see that 1 \times 45 = 45 is the nearest. Now subtract 45 from 53 to get reminder 8. Add 1 to quotient.
\begin{array}{l}\phantom{45)}01\phantom{5}\\45\overline{)530}\\\phantom{45)}\underline{\phantom{}45\phantom{9}}\\\phantom{45)9}80\\\end{array}
Use the 3^{rd} digit 0 from dividend 530
\begin{array}{l}\phantom{45)}011\phantom{6}\\45\overline{)530}\\\phantom{45)}\underline{\phantom{}45\phantom{9}}\\\phantom{45)9}80\\\phantom{45)}\underline{\phantom{9}45\phantom{}}\\\phantom{45)9}35\\\end{array}
Find closest multiple of 45 to 80. We see that 1 \times 45 = 45 is the nearest. Now subtract 45 from 80 to get reminder 35. Add 1 to quotient.
\text{Quotient: }11 \text{Reminder: }35
Since 35 is less than 45, stop the division. The reminder is 35. The topmost line 011 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}