Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

53x^{2}+3102x+40=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-3102±\sqrt{3102^{2}-4\times 53\times 40}}{2\times 53}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 53 for a, 3102 for b, and 40 for c in the quadratic formula.
x=\frac{-3102±2\sqrt{2403481}}{106}
Do the calculations.
x=\frac{\sqrt{2403481}-1551}{53} x=\frac{-\sqrt{2403481}-1551}{53}
Solve the equation x=\frac{-3102±2\sqrt{2403481}}{106} when ± is plus and when ± is minus.
53\left(x-\frac{\sqrt{2403481}-1551}{53}\right)\left(x-\frac{-\sqrt{2403481}-1551}{53}\right)>0
Rewrite the inequality by using the obtained solutions.
x-\frac{\sqrt{2403481}-1551}{53}<0 x-\frac{-\sqrt{2403481}-1551}{53}<0
For the product to be positive, x-\frac{\sqrt{2403481}-1551}{53} and x-\frac{-\sqrt{2403481}-1551}{53} have to be both negative or both positive. Consider the case when x-\frac{\sqrt{2403481}-1551}{53} and x-\frac{-\sqrt{2403481}-1551}{53} are both negative.
x<\frac{-\sqrt{2403481}-1551}{53}
The solution satisfying both inequalities is x<\frac{-\sqrt{2403481}-1551}{53}.
x-\frac{-\sqrt{2403481}-1551}{53}>0 x-\frac{\sqrt{2403481}-1551}{53}>0
Consider the case when x-\frac{\sqrt{2403481}-1551}{53} and x-\frac{-\sqrt{2403481}-1551}{53} are both positive.
x>\frac{\sqrt{2403481}-1551}{53}
The solution satisfying both inequalities is x>\frac{\sqrt{2403481}-1551}{53}.
x<\frac{-\sqrt{2403481}-1551}{53}\text{; }x>\frac{\sqrt{2403481}-1551}{53}
The final solution is the union of the obtained solutions.