Solve for x
x\in \left(-\infty,\frac{-\sqrt{2403481}-1551}{53}\right)\cup \left(\frac{\sqrt{2403481}-1551}{53},\infty\right)
Graph
Share
Copied to clipboard
53x^{2}+3102x+40=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-3102±\sqrt{3102^{2}-4\times 53\times 40}}{2\times 53}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 53 for a, 3102 for b, and 40 for c in the quadratic formula.
x=\frac{-3102±2\sqrt{2403481}}{106}
Do the calculations.
x=\frac{\sqrt{2403481}-1551}{53} x=\frac{-\sqrt{2403481}-1551}{53}
Solve the equation x=\frac{-3102±2\sqrt{2403481}}{106} when ± is plus and when ± is minus.
53\left(x-\frac{\sqrt{2403481}-1551}{53}\right)\left(x-\frac{-\sqrt{2403481}-1551}{53}\right)>0
Rewrite the inequality by using the obtained solutions.
x-\frac{\sqrt{2403481}-1551}{53}<0 x-\frac{-\sqrt{2403481}-1551}{53}<0
For the product to be positive, x-\frac{\sqrt{2403481}-1551}{53} and x-\frac{-\sqrt{2403481}-1551}{53} have to be both negative or both positive. Consider the case when x-\frac{\sqrt{2403481}-1551}{53} and x-\frac{-\sqrt{2403481}-1551}{53} are both negative.
x<\frac{-\sqrt{2403481}-1551}{53}
The solution satisfying both inequalities is x<\frac{-\sqrt{2403481}-1551}{53}.
x-\frac{-\sqrt{2403481}-1551}{53}>0 x-\frac{\sqrt{2403481}-1551}{53}>0
Consider the case when x-\frac{\sqrt{2403481}-1551}{53} and x-\frac{-\sqrt{2403481}-1551}{53} are both positive.
x>\frac{\sqrt{2403481}-1551}{53}
The solution satisfying both inequalities is x>\frac{\sqrt{2403481}-1551}{53}.
x<\frac{-\sqrt{2403481}-1551}{53}\text{; }x>\frac{\sqrt{2403481}-1551}{53}
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}