Evaluate
\frac{529}{30}\approx 17.633333333
Factor
\frac{23 ^ {2}}{2 \cdot 3 \cdot 5} = 17\frac{19}{30} = 17.633333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{30)}\phantom{1}\\30\overline{)529}\\\end{array}
Use the 1^{st} digit 5 from dividend 529
\begin{array}{l}\phantom{30)}0\phantom{2}\\30\overline{)529}\\\end{array}
Since 5 is less than 30, use the next digit 2 from dividend 529 and add 0 to the quotient
\begin{array}{l}\phantom{30)}0\phantom{3}\\30\overline{)529}\\\end{array}
Use the 2^{nd} digit 2 from dividend 529
\begin{array}{l}\phantom{30)}01\phantom{4}\\30\overline{)529}\\\phantom{30)}\underline{\phantom{}30\phantom{9}}\\\phantom{30)}22\\\end{array}
Find closest multiple of 30 to 52. We see that 1 \times 30 = 30 is the nearest. Now subtract 30 from 52 to get reminder 22. Add 1 to quotient.
\begin{array}{l}\phantom{30)}01\phantom{5}\\30\overline{)529}\\\phantom{30)}\underline{\phantom{}30\phantom{9}}\\\phantom{30)}229\\\end{array}
Use the 3^{rd} digit 9 from dividend 529
\begin{array}{l}\phantom{30)}017\phantom{6}\\30\overline{)529}\\\phantom{30)}\underline{\phantom{}30\phantom{9}}\\\phantom{30)}229\\\phantom{30)}\underline{\phantom{}210\phantom{}}\\\phantom{30)9}19\\\end{array}
Find closest multiple of 30 to 229. We see that 7 \times 30 = 210 is the nearest. Now subtract 210 from 229 to get reminder 19. Add 7 to quotient.
\text{Quotient: }17 \text{Reminder: }19
Since 19 is less than 30, stop the division. The reminder is 19. The topmost line 017 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}