Evaluate
\frac{264}{37}\approx 7.135135135
Factor
\frac{2 ^ {3} \cdot 3 \cdot 11}{37} = 7\frac{5}{37} = 7.135135135135135
Share
Copied to clipboard
\begin{array}{l}\phantom{74)}\phantom{1}\\74\overline{)528}\\\end{array}
Use the 1^{st} digit 5 from dividend 528
\begin{array}{l}\phantom{74)}0\phantom{2}\\74\overline{)528}\\\end{array}
Since 5 is less than 74, use the next digit 2 from dividend 528 and add 0 to the quotient
\begin{array}{l}\phantom{74)}0\phantom{3}\\74\overline{)528}\\\end{array}
Use the 2^{nd} digit 2 from dividend 528
\begin{array}{l}\phantom{74)}00\phantom{4}\\74\overline{)528}\\\end{array}
Since 52 is less than 74, use the next digit 8 from dividend 528 and add 0 to the quotient
\begin{array}{l}\phantom{74)}00\phantom{5}\\74\overline{)528}\\\end{array}
Use the 3^{rd} digit 8 from dividend 528
\begin{array}{l}\phantom{74)}007\phantom{6}\\74\overline{)528}\\\phantom{74)}\underline{\phantom{}518\phantom{}}\\\phantom{74)9}10\\\end{array}
Find closest multiple of 74 to 528. We see that 7 \times 74 = 518 is the nearest. Now subtract 518 from 528 to get reminder 10. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }10
Since 10 is less than 74, stop the division. The reminder is 10. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}