Evaluate
\frac{527483}{72}\approx 7326.152777778
Factor
\frac{11 \cdot 79 \cdot 607}{2 ^ {3} \cdot 3 ^ {2}} = 7326\frac{11}{72} = 7326.152777777777
Share
Copied to clipboard
\begin{array}{l}\phantom{72)}\phantom{1}\\72\overline{)527483}\\\end{array}
Use the 1^{st} digit 5 from dividend 527483
\begin{array}{l}\phantom{72)}0\phantom{2}\\72\overline{)527483}\\\end{array}
Since 5 is less than 72, use the next digit 2 from dividend 527483 and add 0 to the quotient
\begin{array}{l}\phantom{72)}0\phantom{3}\\72\overline{)527483}\\\end{array}
Use the 2^{nd} digit 2 from dividend 527483
\begin{array}{l}\phantom{72)}00\phantom{4}\\72\overline{)527483}\\\end{array}
Since 52 is less than 72, use the next digit 7 from dividend 527483 and add 0 to the quotient
\begin{array}{l}\phantom{72)}00\phantom{5}\\72\overline{)527483}\\\end{array}
Use the 3^{rd} digit 7 from dividend 527483
\begin{array}{l}\phantom{72)}007\phantom{6}\\72\overline{)527483}\\\phantom{72)}\underline{\phantom{}504\phantom{999}}\\\phantom{72)9}23\\\end{array}
Find closest multiple of 72 to 527. We see that 7 \times 72 = 504 is the nearest. Now subtract 504 from 527 to get reminder 23. Add 7 to quotient.
\begin{array}{l}\phantom{72)}007\phantom{7}\\72\overline{)527483}\\\phantom{72)}\underline{\phantom{}504\phantom{999}}\\\phantom{72)9}234\\\end{array}
Use the 4^{th} digit 4 from dividend 527483
\begin{array}{l}\phantom{72)}0073\phantom{8}\\72\overline{)527483}\\\phantom{72)}\underline{\phantom{}504\phantom{999}}\\\phantom{72)9}234\\\phantom{72)}\underline{\phantom{9}216\phantom{99}}\\\phantom{72)99}18\\\end{array}
Find closest multiple of 72 to 234. We see that 3 \times 72 = 216 is the nearest. Now subtract 216 from 234 to get reminder 18. Add 3 to quotient.
\begin{array}{l}\phantom{72)}0073\phantom{9}\\72\overline{)527483}\\\phantom{72)}\underline{\phantom{}504\phantom{999}}\\\phantom{72)9}234\\\phantom{72)}\underline{\phantom{9}216\phantom{99}}\\\phantom{72)99}188\\\end{array}
Use the 5^{th} digit 8 from dividend 527483
\begin{array}{l}\phantom{72)}00732\phantom{10}\\72\overline{)527483}\\\phantom{72)}\underline{\phantom{}504\phantom{999}}\\\phantom{72)9}234\\\phantom{72)}\underline{\phantom{9}216\phantom{99}}\\\phantom{72)99}188\\\phantom{72)}\underline{\phantom{99}144\phantom{9}}\\\phantom{72)999}44\\\end{array}
Find closest multiple of 72 to 188. We see that 2 \times 72 = 144 is the nearest. Now subtract 144 from 188 to get reminder 44. Add 2 to quotient.
\begin{array}{l}\phantom{72)}00732\phantom{11}\\72\overline{)527483}\\\phantom{72)}\underline{\phantom{}504\phantom{999}}\\\phantom{72)9}234\\\phantom{72)}\underline{\phantom{9}216\phantom{99}}\\\phantom{72)99}188\\\phantom{72)}\underline{\phantom{99}144\phantom{9}}\\\phantom{72)999}443\\\end{array}
Use the 6^{th} digit 3 from dividend 527483
\begin{array}{l}\phantom{72)}007326\phantom{12}\\72\overline{)527483}\\\phantom{72)}\underline{\phantom{}504\phantom{999}}\\\phantom{72)9}234\\\phantom{72)}\underline{\phantom{9}216\phantom{99}}\\\phantom{72)99}188\\\phantom{72)}\underline{\phantom{99}144\phantom{9}}\\\phantom{72)999}443\\\phantom{72)}\underline{\phantom{999}432\phantom{}}\\\phantom{72)9999}11\\\end{array}
Find closest multiple of 72 to 443. We see that 6 \times 72 = 432 is the nearest. Now subtract 432 from 443 to get reminder 11. Add 6 to quotient.
\text{Quotient: }7326 \text{Reminder: }11
Since 11 is less than 72, stop the division. The reminder is 11. The topmost line 007326 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7326.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}