Solve for n
n=\log_{1048}\left(\frac{32771}{21}\right)\approx 1.057247826
Share
Copied to clipboard
\frac{1048^{n}-1}{1048\times \frac{1}{4}}=\frac{3125}{525}
Divide both sides by 525.
\frac{1048^{n}-1}{1048\times \frac{1}{4}}=\frac{125}{21}
Reduce the fraction \frac{3125}{525} to lowest terms by extracting and canceling out 25.
\frac{1048^{n}-1}{262}=\frac{125}{21}
Multiply 1048 and \frac{1}{4} to get 262.
\frac{1}{262}\times 1048^{n}-\frac{1}{262}=\frac{125}{21}
Divide each term of 1048^{n}-1 by 262 to get \frac{1}{262}\times 1048^{n}-\frac{1}{262}.
\frac{1}{262}\times 1048^{n}=\frac{32771}{5502}
Add \frac{1}{262} to both sides of the equation.
1048^{n}=\frac{32771}{21}
Multiply both sides by 262.
\log(1048^{n})=\log(\frac{32771}{21})
Take the logarithm of both sides of the equation.
n\log(1048)=\log(\frac{32771}{21})
The logarithm of a number raised to a power is the power times the logarithm of the number.
n=\frac{\log(\frac{32771}{21})}{\log(1048)}
Divide both sides by \log(1048).
n=\log_{1048}\left(\frac{32771}{21}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}