Evaluate
\frac{525}{289}\approx 1.816608997
Factor
\frac{3 \cdot 5 ^ {2} \cdot 7}{17 ^ {2}} = 1\frac{236}{289} = 1.8166089965397925
Share
Copied to clipboard
\begin{array}{l}\phantom{289)}\phantom{1}\\289\overline{)525}\\\end{array}
Use the 1^{st} digit 5 from dividend 525
\begin{array}{l}\phantom{289)}0\phantom{2}\\289\overline{)525}\\\end{array}
Since 5 is less than 289, use the next digit 2 from dividend 525 and add 0 to the quotient
\begin{array}{l}\phantom{289)}0\phantom{3}\\289\overline{)525}\\\end{array}
Use the 2^{nd} digit 2 from dividend 525
\begin{array}{l}\phantom{289)}00\phantom{4}\\289\overline{)525}\\\end{array}
Since 52 is less than 289, use the next digit 5 from dividend 525 and add 0 to the quotient
\begin{array}{l}\phantom{289)}00\phantom{5}\\289\overline{)525}\\\end{array}
Use the 3^{rd} digit 5 from dividend 525
\begin{array}{l}\phantom{289)}001\phantom{6}\\289\overline{)525}\\\phantom{289)}\underline{\phantom{}289\phantom{}}\\\phantom{289)}236\\\end{array}
Find closest multiple of 289 to 525. We see that 1 \times 289 = 289 is the nearest. Now subtract 289 from 525 to get reminder 236. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }236
Since 236 is less than 289, stop the division. The reminder is 236. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}