Evaluate
\frac{524}{89}\approx 5.887640449
Factor
\frac{2 ^ {2} \cdot 131}{89} = 5\frac{79}{89} = 5.887640449438202
Share
Copied to clipboard
\begin{array}{l}\phantom{89)}\phantom{1}\\89\overline{)524}\\\end{array}
Use the 1^{st} digit 5 from dividend 524
\begin{array}{l}\phantom{89)}0\phantom{2}\\89\overline{)524}\\\end{array}
Since 5 is less than 89, use the next digit 2 from dividend 524 and add 0 to the quotient
\begin{array}{l}\phantom{89)}0\phantom{3}\\89\overline{)524}\\\end{array}
Use the 2^{nd} digit 2 from dividend 524
\begin{array}{l}\phantom{89)}00\phantom{4}\\89\overline{)524}\\\end{array}
Since 52 is less than 89, use the next digit 4 from dividend 524 and add 0 to the quotient
\begin{array}{l}\phantom{89)}00\phantom{5}\\89\overline{)524}\\\end{array}
Use the 3^{rd} digit 4 from dividend 524
\begin{array}{l}\phantom{89)}005\phantom{6}\\89\overline{)524}\\\phantom{89)}\underline{\phantom{}445\phantom{}}\\\phantom{89)9}79\\\end{array}
Find closest multiple of 89 to 524. We see that 5 \times 89 = 445 is the nearest. Now subtract 445 from 524 to get reminder 79. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }79
Since 79 is less than 89, stop the division. The reminder is 79. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}