Evaluate
\frac{524}{101}\approx 5.188118812
Factor
\frac{2 ^ {2} \cdot 131}{101} = 5\frac{19}{101} = 5.188118811881188
Share
Copied to clipboard
\begin{array}{l}\phantom{101)}\phantom{1}\\101\overline{)524}\\\end{array}
Use the 1^{st} digit 5 from dividend 524
\begin{array}{l}\phantom{101)}0\phantom{2}\\101\overline{)524}\\\end{array}
Since 5 is less than 101, use the next digit 2 from dividend 524 and add 0 to the quotient
\begin{array}{l}\phantom{101)}0\phantom{3}\\101\overline{)524}\\\end{array}
Use the 2^{nd} digit 2 from dividend 524
\begin{array}{l}\phantom{101)}00\phantom{4}\\101\overline{)524}\\\end{array}
Since 52 is less than 101, use the next digit 4 from dividend 524 and add 0 to the quotient
\begin{array}{l}\phantom{101)}00\phantom{5}\\101\overline{)524}\\\end{array}
Use the 3^{rd} digit 4 from dividend 524
\begin{array}{l}\phantom{101)}005\phantom{6}\\101\overline{)524}\\\phantom{101)}\underline{\phantom{}505\phantom{}}\\\phantom{101)9}19\\\end{array}
Find closest multiple of 101 to 524. We see that 5 \times 101 = 505 is the nearest. Now subtract 505 from 524 to get reminder 19. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }19
Since 19 is less than 101, stop the division. The reminder is 19. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}