Solve for a
a=\frac{\sqrt{1001}}{65}\approx 0.486747447
a=-\frac{\sqrt{1001}}{65}\approx -0.486747447
Share
Copied to clipboard
52000a^{2}=12320
Add 12320 to both sides. Anything plus zero gives itself.
a^{2}=\frac{12320}{52000}
Divide both sides by 52000.
a^{2}=\frac{77}{325}
Reduce the fraction \frac{12320}{52000} to lowest terms by extracting and canceling out 160.
a=\frac{\sqrt{1001}}{65} a=-\frac{\sqrt{1001}}{65}
Take the square root of both sides of the equation.
52000a^{2}-12320=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
a=\frac{0±\sqrt{0^{2}-4\times 52000\left(-12320\right)}}{2\times 52000}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 52000 for a, 0 for b, and -12320 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\times 52000\left(-12320\right)}}{2\times 52000}
Square 0.
a=\frac{0±\sqrt{-208000\left(-12320\right)}}{2\times 52000}
Multiply -4 times 52000.
a=\frac{0±\sqrt{2562560000}}{2\times 52000}
Multiply -208000 times -12320.
a=\frac{0±1600\sqrt{1001}}{2\times 52000}
Take the square root of 2562560000.
a=\frac{0±1600\sqrt{1001}}{104000}
Multiply 2 times 52000.
a=\frac{\sqrt{1001}}{65}
Now solve the equation a=\frac{0±1600\sqrt{1001}}{104000} when ± is plus.
a=-\frac{\sqrt{1001}}{65}
Now solve the equation a=\frac{0±1600\sqrt{1001}}{104000} when ± is minus.
a=\frac{\sqrt{1001}}{65} a=-\frac{\sqrt{1001}}{65}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}