Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

520+x+10=\left(x+10\right)\times 520+\left(x+10\right)x
Variable x cannot be equal to -10 since division by zero is not defined. Multiply both sides of the equation by x+10.
530+x=\left(x+10\right)\times 520+\left(x+10\right)x
Add 520 and 10 to get 530.
530+x=520x+5200+\left(x+10\right)x
Use the distributive property to multiply x+10 by 520.
530+x=520x+5200+x^{2}+10x
Use the distributive property to multiply x+10 by x.
530+x=530x+5200+x^{2}
Combine 520x and 10x to get 530x.
530+x-530x=5200+x^{2}
Subtract 530x from both sides.
530-529x=5200+x^{2}
Combine x and -530x to get -529x.
530-529x-5200=x^{2}
Subtract 5200 from both sides.
-4670-529x=x^{2}
Subtract 5200 from 530 to get -4670.
-4670-529x-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}-529x-4670=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-529\right)±\sqrt{\left(-529\right)^{2}-4\left(-1\right)\left(-4670\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -529 for b, and -4670 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-529\right)±\sqrt{279841-4\left(-1\right)\left(-4670\right)}}{2\left(-1\right)}
Square -529.
x=\frac{-\left(-529\right)±\sqrt{279841+4\left(-4670\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-529\right)±\sqrt{279841-18680}}{2\left(-1\right)}
Multiply 4 times -4670.
x=\frac{-\left(-529\right)±\sqrt{261161}}{2\left(-1\right)}
Add 279841 to -18680.
x=\frac{529±\sqrt{261161}}{2\left(-1\right)}
The opposite of -529 is 529.
x=\frac{529±\sqrt{261161}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{261161}+529}{-2}
Now solve the equation x=\frac{529±\sqrt{261161}}{-2} when ± is plus. Add 529 to \sqrt{261161}.
x=\frac{-\sqrt{261161}-529}{2}
Divide 529+\sqrt{261161} by -2.
x=\frac{529-\sqrt{261161}}{-2}
Now solve the equation x=\frac{529±\sqrt{261161}}{-2} when ± is minus. Subtract \sqrt{261161} from 529.
x=\frac{\sqrt{261161}-529}{2}
Divide 529-\sqrt{261161} by -2.
x=\frac{-\sqrt{261161}-529}{2} x=\frac{\sqrt{261161}-529}{2}
The equation is now solved.
520+x+10=\left(x+10\right)\times 520+\left(x+10\right)x
Variable x cannot be equal to -10 since division by zero is not defined. Multiply both sides of the equation by x+10.
530+x=\left(x+10\right)\times 520+\left(x+10\right)x
Add 520 and 10 to get 530.
530+x=520x+5200+\left(x+10\right)x
Use the distributive property to multiply x+10 by 520.
530+x=520x+5200+x^{2}+10x
Use the distributive property to multiply x+10 by x.
530+x=530x+5200+x^{2}
Combine 520x and 10x to get 530x.
530+x-530x=5200+x^{2}
Subtract 530x from both sides.
530-529x=5200+x^{2}
Combine x and -530x to get -529x.
530-529x-x^{2}=5200
Subtract x^{2} from both sides.
-529x-x^{2}=5200-530
Subtract 530 from both sides.
-529x-x^{2}=4670
Subtract 530 from 5200 to get 4670.
-x^{2}-529x=4670
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-529x}{-1}=\frac{4670}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{529}{-1}\right)x=\frac{4670}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+529x=\frac{4670}{-1}
Divide -529 by -1.
x^{2}+529x=-4670
Divide 4670 by -1.
x^{2}+529x+\left(\frac{529}{2}\right)^{2}=-4670+\left(\frac{529}{2}\right)^{2}
Divide 529, the coefficient of the x term, by 2 to get \frac{529}{2}. Then add the square of \frac{529}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+529x+\frac{279841}{4}=-4670+\frac{279841}{4}
Square \frac{529}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+529x+\frac{279841}{4}=\frac{261161}{4}
Add -4670 to \frac{279841}{4}.
\left(x+\frac{529}{2}\right)^{2}=\frac{261161}{4}
Factor x^{2}+529x+\frac{279841}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{529}{2}\right)^{2}}=\sqrt{\frac{261161}{4}}
Take the square root of both sides of the equation.
x+\frac{529}{2}=\frac{\sqrt{261161}}{2} x+\frac{529}{2}=-\frac{\sqrt{261161}}{2}
Simplify.
x=\frac{\sqrt{261161}-529}{2} x=\frac{-\sqrt{261161}-529}{2}
Subtract \frac{529}{2} from both sides of the equation.