Evaluate
\frac{13}{12}\approx 1.083333333
Factor
\frac{13}{2 ^ {2} \cdot 3} = 1\frac{1}{12} = 1.0833333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{480)}\phantom{1}\\480\overline{)520}\\\end{array}
Use the 1^{st} digit 5 from dividend 520
\begin{array}{l}\phantom{480)}0\phantom{2}\\480\overline{)520}\\\end{array}
Since 5 is less than 480, use the next digit 2 from dividend 520 and add 0 to the quotient
\begin{array}{l}\phantom{480)}0\phantom{3}\\480\overline{)520}\\\end{array}
Use the 2^{nd} digit 2 from dividend 520
\begin{array}{l}\phantom{480)}00\phantom{4}\\480\overline{)520}\\\end{array}
Since 52 is less than 480, use the next digit 0 from dividend 520 and add 0 to the quotient
\begin{array}{l}\phantom{480)}00\phantom{5}\\480\overline{)520}\\\end{array}
Use the 3^{rd} digit 0 from dividend 520
\begin{array}{l}\phantom{480)}001\phantom{6}\\480\overline{)520}\\\phantom{480)}\underline{\phantom{}480\phantom{}}\\\phantom{480)9}40\\\end{array}
Find closest multiple of 480 to 520. We see that 1 \times 480 = 480 is the nearest. Now subtract 480 from 520 to get reminder 40. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }40
Since 40 is less than 480, stop the division. The reminder is 40. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}