Evaluate
\frac{26}{7}\approx 3.714285714
Factor
\frac{2 \cdot 13}{7} = 3\frac{5}{7} = 3.7142857142857144
Share
Copied to clipboard
\begin{array}{l}\phantom{14)}\phantom{1}\\14\overline{)52}\\\end{array}
Use the 1^{st} digit 5 from dividend 52
\begin{array}{l}\phantom{14)}0\phantom{2}\\14\overline{)52}\\\end{array}
Since 5 is less than 14, use the next digit 2 from dividend 52 and add 0 to the quotient
\begin{array}{l}\phantom{14)}0\phantom{3}\\14\overline{)52}\\\end{array}
Use the 2^{nd} digit 2 from dividend 52
\begin{array}{l}\phantom{14)}03\phantom{4}\\14\overline{)52}\\\phantom{14)}\underline{\phantom{}42\phantom{}}\\\phantom{14)}10\\\end{array}
Find closest multiple of 14 to 52. We see that 3 \times 14 = 42 is the nearest. Now subtract 42 from 52 to get reminder 10. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }10
Since 10 is less than 14, stop the division. The reminder is 10. The topmost line 03 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}