Solve for x
x = \frac{600 \sqrt{4755} + 53000}{211} \approx 447.269691087
x = \frac{53000 - 600 \sqrt{4755}}{211} \approx 55.09997716
Graph
Share
Copied to clipboard
-0.00211x^{2}+1.06x=52
Swap sides so that all variable terms are on the left hand side.
-0.00211x^{2}+1.06x-52=0
Subtract 52 from both sides.
x=\frac{-1.06±\sqrt{1.06^{2}-4\left(-0.00211\right)\left(-52\right)}}{2\left(-0.00211\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -0.00211 for a, 1.06 for b, and -52 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1.06±\sqrt{1.1236-4\left(-0.00211\right)\left(-52\right)}}{2\left(-0.00211\right)}
Square 1.06 by squaring both the numerator and the denominator of the fraction.
x=\frac{-1.06±\sqrt{1.1236+0.00844\left(-52\right)}}{2\left(-0.00211\right)}
Multiply -4 times -0.00211.
x=\frac{-1.06±\sqrt{1.1236-0.43888}}{2\left(-0.00211\right)}
Multiply 0.00844 times -52.
x=\frac{-1.06±\sqrt{0.68472}}{2\left(-0.00211\right)}
Add 1.1236 to -0.43888 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-1.06±\frac{3\sqrt{4755}}{250}}{2\left(-0.00211\right)}
Take the square root of 0.68472.
x=\frac{-1.06±\frac{3\sqrt{4755}}{250}}{-0.00422}
Multiply 2 times -0.00211.
x=\frac{\frac{3\sqrt{4755}}{250}-\frac{53}{50}}{-0.00422}
Now solve the equation x=\frac{-1.06±\frac{3\sqrt{4755}}{250}}{-0.00422} when ± is plus. Add -1.06 to \frac{3\sqrt{4755}}{250}.
x=\frac{53000-600\sqrt{4755}}{211}
Divide -\frac{53}{50}+\frac{3\sqrt{4755}}{250} by -0.00422 by multiplying -\frac{53}{50}+\frac{3\sqrt{4755}}{250} by the reciprocal of -0.00422.
x=\frac{-\frac{3\sqrt{4755}}{250}-\frac{53}{50}}{-0.00422}
Now solve the equation x=\frac{-1.06±\frac{3\sqrt{4755}}{250}}{-0.00422} when ± is minus. Subtract \frac{3\sqrt{4755}}{250} from -1.06.
x=\frac{600\sqrt{4755}+53000}{211}
Divide -\frac{53}{50}-\frac{3\sqrt{4755}}{250} by -0.00422 by multiplying -\frac{53}{50}-\frac{3\sqrt{4755}}{250} by the reciprocal of -0.00422.
x=\frac{53000-600\sqrt{4755}}{211} x=\frac{600\sqrt{4755}+53000}{211}
The equation is now solved.
-0.00211x^{2}+1.06x=52
Swap sides so that all variable terms are on the left hand side.
\frac{-0.00211x^{2}+1.06x}{-0.00211}=\frac{52}{-0.00211}
Divide both sides of the equation by -0.00211, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{1.06}{-0.00211}x=\frac{52}{-0.00211}
Dividing by -0.00211 undoes the multiplication by -0.00211.
x^{2}-\frac{106000}{211}x=\frac{52}{-0.00211}
Divide 1.06 by -0.00211 by multiplying 1.06 by the reciprocal of -0.00211.
x^{2}-\frac{106000}{211}x=-\frac{5200000}{211}
Divide 52 by -0.00211 by multiplying 52 by the reciprocal of -0.00211.
x^{2}-\frac{106000}{211}x+\left(-\frac{53000}{211}\right)^{2}=-\frac{5200000}{211}+\left(-\frac{53000}{211}\right)^{2}
Divide -\frac{106000}{211}, the coefficient of the x term, by 2 to get -\frac{53000}{211}. Then add the square of -\frac{53000}{211} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{106000}{211}x+\frac{2809000000}{44521}=-\frac{5200000}{211}+\frac{2809000000}{44521}
Square -\frac{53000}{211} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{106000}{211}x+\frac{2809000000}{44521}=\frac{1711800000}{44521}
Add -\frac{5200000}{211} to \frac{2809000000}{44521} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{53000}{211}\right)^{2}=\frac{1711800000}{44521}
Factor x^{2}-\frac{106000}{211}x+\frac{2809000000}{44521}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{53000}{211}\right)^{2}}=\sqrt{\frac{1711800000}{44521}}
Take the square root of both sides of the equation.
x-\frac{53000}{211}=\frac{600\sqrt{4755}}{211} x-\frac{53000}{211}=-\frac{600\sqrt{4755}}{211}
Simplify.
x=\frac{600\sqrt{4755}+53000}{211} x=\frac{53000-600\sqrt{4755}}{211}
Add \frac{53000}{211} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}