Evaluate
-62x^{2}+135x-6
Factor
-62\left(x-\frac{135-\sqrt{16737}}{124}\right)\left(x-\frac{\sqrt{16737}+135}{124}\right)
Graph
Share
Copied to clipboard
112x-14x^{2}-48x^{2}-6+23x
Combine 51x and 61x to get 112x.
112x-62x^{2}-6+23x
Combine -14x^{2} and -48x^{2} to get -62x^{2}.
135x-62x^{2}-6
Combine 112x and 23x to get 135x.
factor(112x-14x^{2}-48x^{2}-6+23x)
Combine 51x and 61x to get 112x.
factor(112x-62x^{2}-6+23x)
Combine -14x^{2} and -48x^{2} to get -62x^{2}.
factor(135x-62x^{2}-6)
Combine 112x and 23x to get 135x.
-62x^{2}+135x-6=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-135±\sqrt{135^{2}-4\left(-62\right)\left(-6\right)}}{2\left(-62\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-135±\sqrt{18225-4\left(-62\right)\left(-6\right)}}{2\left(-62\right)}
Square 135.
x=\frac{-135±\sqrt{18225+248\left(-6\right)}}{2\left(-62\right)}
Multiply -4 times -62.
x=\frac{-135±\sqrt{18225-1488}}{2\left(-62\right)}
Multiply 248 times -6.
x=\frac{-135±\sqrt{16737}}{2\left(-62\right)}
Add 18225 to -1488.
x=\frac{-135±\sqrt{16737}}{-124}
Multiply 2 times -62.
x=\frac{\sqrt{16737}-135}{-124}
Now solve the equation x=\frac{-135±\sqrt{16737}}{-124} when ± is plus. Add -135 to \sqrt{16737}.
x=\frac{135-\sqrt{16737}}{124}
Divide -135+\sqrt{16737} by -124.
x=\frac{-\sqrt{16737}-135}{-124}
Now solve the equation x=\frac{-135±\sqrt{16737}}{-124} when ± is minus. Subtract \sqrt{16737} from -135.
x=\frac{\sqrt{16737}+135}{124}
Divide -135-\sqrt{16737} by -124.
-62x^{2}+135x-6=-62\left(x-\frac{135-\sqrt{16737}}{124}\right)\left(x-\frac{\sqrt{16737}+135}{124}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{135-\sqrt{16737}}{124} for x_{1} and \frac{135+\sqrt{16737}}{124} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}