Evaluate
\frac{519}{20}=25.95
Factor
\frac{3 \cdot 173}{2 ^ {2} \cdot 5} = 25\frac{19}{20} = 25.95
Share
Copied to clipboard
\begin{array}{l}\phantom{20)}\phantom{1}\\20\overline{)519}\\\end{array}
Use the 1^{st} digit 5 from dividend 519
\begin{array}{l}\phantom{20)}0\phantom{2}\\20\overline{)519}\\\end{array}
Since 5 is less than 20, use the next digit 1 from dividend 519 and add 0 to the quotient
\begin{array}{l}\phantom{20)}0\phantom{3}\\20\overline{)519}\\\end{array}
Use the 2^{nd} digit 1 from dividend 519
\begin{array}{l}\phantom{20)}02\phantom{4}\\20\overline{)519}\\\phantom{20)}\underline{\phantom{}40\phantom{9}}\\\phantom{20)}11\\\end{array}
Find closest multiple of 20 to 51. We see that 2 \times 20 = 40 is the nearest. Now subtract 40 from 51 to get reminder 11. Add 2 to quotient.
\begin{array}{l}\phantom{20)}02\phantom{5}\\20\overline{)519}\\\phantom{20)}\underline{\phantom{}40\phantom{9}}\\\phantom{20)}119\\\end{array}
Use the 3^{rd} digit 9 from dividend 519
\begin{array}{l}\phantom{20)}025\phantom{6}\\20\overline{)519}\\\phantom{20)}\underline{\phantom{}40\phantom{9}}\\\phantom{20)}119\\\phantom{20)}\underline{\phantom{}100\phantom{}}\\\phantom{20)9}19\\\end{array}
Find closest multiple of 20 to 119. We see that 5 \times 20 = 100 is the nearest. Now subtract 100 from 119 to get reminder 19. Add 5 to quotient.
\text{Quotient: }25 \text{Reminder: }19
Since 19 is less than 20, stop the division. The reminder is 19. The topmost line 025 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}