Evaluate
\frac{258}{49}\approx 5.265306122
Factor
\frac{2 \cdot 3 \cdot 43}{7 ^ {2}} = 5\frac{13}{49} = 5.26530612244898
Share
Copied to clipboard
\begin{array}{l}\phantom{98)}\phantom{1}\\98\overline{)516}\\\end{array}
Use the 1^{st} digit 5 from dividend 516
\begin{array}{l}\phantom{98)}0\phantom{2}\\98\overline{)516}\\\end{array}
Since 5 is less than 98, use the next digit 1 from dividend 516 and add 0 to the quotient
\begin{array}{l}\phantom{98)}0\phantom{3}\\98\overline{)516}\\\end{array}
Use the 2^{nd} digit 1 from dividend 516
\begin{array}{l}\phantom{98)}00\phantom{4}\\98\overline{)516}\\\end{array}
Since 51 is less than 98, use the next digit 6 from dividend 516 and add 0 to the quotient
\begin{array}{l}\phantom{98)}00\phantom{5}\\98\overline{)516}\\\end{array}
Use the 3^{rd} digit 6 from dividend 516
\begin{array}{l}\phantom{98)}005\phantom{6}\\98\overline{)516}\\\phantom{98)}\underline{\phantom{}490\phantom{}}\\\phantom{98)9}26\\\end{array}
Find closest multiple of 98 to 516. We see that 5 \times 98 = 490 is the nearest. Now subtract 490 from 516 to get reminder 26. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }26
Since 26 is less than 98, stop the division. The reminder is 26. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}