Evaluate
\frac{14}{5}=2.8
Factor
\frac{2 \cdot 7}{5} = 2\frac{4}{5} = 2.8
Share
Copied to clipboard
\begin{array}{l}\phantom{1840)}\phantom{1}\\1840\overline{)5152}\\\end{array}
Use the 1^{st} digit 5 from dividend 5152
\begin{array}{l}\phantom{1840)}0\phantom{2}\\1840\overline{)5152}\\\end{array}
Since 5 is less than 1840, use the next digit 1 from dividend 5152 and add 0 to the quotient
\begin{array}{l}\phantom{1840)}0\phantom{3}\\1840\overline{)5152}\\\end{array}
Use the 2^{nd} digit 1 from dividend 5152
\begin{array}{l}\phantom{1840)}00\phantom{4}\\1840\overline{)5152}\\\end{array}
Since 51 is less than 1840, use the next digit 5 from dividend 5152 and add 0 to the quotient
\begin{array}{l}\phantom{1840)}00\phantom{5}\\1840\overline{)5152}\\\end{array}
Use the 3^{rd} digit 5 from dividend 5152
\begin{array}{l}\phantom{1840)}000\phantom{6}\\1840\overline{)5152}\\\end{array}
Since 515 is less than 1840, use the next digit 2 from dividend 5152 and add 0 to the quotient
\begin{array}{l}\phantom{1840)}000\phantom{7}\\1840\overline{)5152}\\\end{array}
Use the 4^{th} digit 2 from dividend 5152
\begin{array}{l}\phantom{1840)}0002\phantom{8}\\1840\overline{)5152}\\\phantom{1840)}\underline{\phantom{}3680\phantom{}}\\\phantom{1840)}1472\\\end{array}
Find closest multiple of 1840 to 5152. We see that 2 \times 1840 = 3680 is the nearest. Now subtract 3680 from 5152 to get reminder 1472. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }1472
Since 1472 is less than 1840, stop the division. The reminder is 1472. The topmost line 0002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}