Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

515=x^{2}+x^{2}+4x+4+\left(x+4\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
515=2x^{2}+4x+4+\left(x+4\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
515=2x^{2}+4x+4+x^{2}+8x+16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
515=3x^{2}+4x+4+8x+16
Combine 2x^{2} and x^{2} to get 3x^{2}.
515=3x^{2}+12x+4+16
Combine 4x and 8x to get 12x.
515=3x^{2}+12x+20
Add 4 and 16 to get 20.
3x^{2}+12x+20=515
Swap sides so that all variable terms are on the left hand side.
3x^{2}+12x+20-515=0
Subtract 515 from both sides.
3x^{2}+12x-495=0
Subtract 515 from 20 to get -495.
x^{2}+4x-165=0
Divide both sides by 3.
a+b=4 ab=1\left(-165\right)=-165
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-165. To find a and b, set up a system to be solved.
-1,165 -3,55 -5,33 -11,15
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -165.
-1+165=164 -3+55=52 -5+33=28 -11+15=4
Calculate the sum for each pair.
a=-11 b=15
The solution is the pair that gives sum 4.
\left(x^{2}-11x\right)+\left(15x-165\right)
Rewrite x^{2}+4x-165 as \left(x^{2}-11x\right)+\left(15x-165\right).
x\left(x-11\right)+15\left(x-11\right)
Factor out x in the first and 15 in the second group.
\left(x-11\right)\left(x+15\right)
Factor out common term x-11 by using distributive property.
x=11 x=-15
To find equation solutions, solve x-11=0 and x+15=0.
515=x^{2}+x^{2}+4x+4+\left(x+4\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
515=2x^{2}+4x+4+\left(x+4\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
515=2x^{2}+4x+4+x^{2}+8x+16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
515=3x^{2}+4x+4+8x+16
Combine 2x^{2} and x^{2} to get 3x^{2}.
515=3x^{2}+12x+4+16
Combine 4x and 8x to get 12x.
515=3x^{2}+12x+20
Add 4 and 16 to get 20.
3x^{2}+12x+20=515
Swap sides so that all variable terms are on the left hand side.
3x^{2}+12x+20-515=0
Subtract 515 from both sides.
3x^{2}+12x-495=0
Subtract 515 from 20 to get -495.
x=\frac{-12±\sqrt{12^{2}-4\times 3\left(-495\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 12 for b, and -495 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 3\left(-495\right)}}{2\times 3}
Square 12.
x=\frac{-12±\sqrt{144-12\left(-495\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-12±\sqrt{144+5940}}{2\times 3}
Multiply -12 times -495.
x=\frac{-12±\sqrt{6084}}{2\times 3}
Add 144 to 5940.
x=\frac{-12±78}{2\times 3}
Take the square root of 6084.
x=\frac{-12±78}{6}
Multiply 2 times 3.
x=\frac{66}{6}
Now solve the equation x=\frac{-12±78}{6} when ± is plus. Add -12 to 78.
x=11
Divide 66 by 6.
x=-\frac{90}{6}
Now solve the equation x=\frac{-12±78}{6} when ± is minus. Subtract 78 from -12.
x=-15
Divide -90 by 6.
x=11 x=-15
The equation is now solved.
515=x^{2}+x^{2}+4x+4+\left(x+4\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
515=2x^{2}+4x+4+\left(x+4\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
515=2x^{2}+4x+4+x^{2}+8x+16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
515=3x^{2}+4x+4+8x+16
Combine 2x^{2} and x^{2} to get 3x^{2}.
515=3x^{2}+12x+4+16
Combine 4x and 8x to get 12x.
515=3x^{2}+12x+20
Add 4 and 16 to get 20.
3x^{2}+12x+20=515
Swap sides so that all variable terms are on the left hand side.
3x^{2}+12x=515-20
Subtract 20 from both sides.
3x^{2}+12x=495
Subtract 20 from 515 to get 495.
\frac{3x^{2}+12x}{3}=\frac{495}{3}
Divide both sides by 3.
x^{2}+\frac{12}{3}x=\frac{495}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+4x=\frac{495}{3}
Divide 12 by 3.
x^{2}+4x=165
Divide 495 by 3.
x^{2}+4x+2^{2}=165+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=165+4
Square 2.
x^{2}+4x+4=169
Add 165 to 4.
\left(x+2\right)^{2}=169
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{169}
Take the square root of both sides of the equation.
x+2=13 x+2=-13
Simplify.
x=11 x=-15
Subtract 2 from both sides of the equation.