Evaluate
\frac{5144}{625}=8.2304
Factor
\frac{2 ^ {3} \cdot 643}{5 ^ {4}} = 8\frac{144}{625} = 8.2304
Share
Copied to clipboard
\begin{array}{l}\phantom{625)}\phantom{1}\\625\overline{)5144}\\\end{array}
Use the 1^{st} digit 5 from dividend 5144
\begin{array}{l}\phantom{625)}0\phantom{2}\\625\overline{)5144}\\\end{array}
Since 5 is less than 625, use the next digit 1 from dividend 5144 and add 0 to the quotient
\begin{array}{l}\phantom{625)}0\phantom{3}\\625\overline{)5144}\\\end{array}
Use the 2^{nd} digit 1 from dividend 5144
\begin{array}{l}\phantom{625)}00\phantom{4}\\625\overline{)5144}\\\end{array}
Since 51 is less than 625, use the next digit 4 from dividend 5144 and add 0 to the quotient
\begin{array}{l}\phantom{625)}00\phantom{5}\\625\overline{)5144}\\\end{array}
Use the 3^{rd} digit 4 from dividend 5144
\begin{array}{l}\phantom{625)}000\phantom{6}\\625\overline{)5144}\\\end{array}
Since 514 is less than 625, use the next digit 4 from dividend 5144 and add 0 to the quotient
\begin{array}{l}\phantom{625)}000\phantom{7}\\625\overline{)5144}\\\end{array}
Use the 4^{th} digit 4 from dividend 5144
\begin{array}{l}\phantom{625)}0008\phantom{8}\\625\overline{)5144}\\\phantom{625)}\underline{\phantom{}5000\phantom{}}\\\phantom{625)9}144\\\end{array}
Find closest multiple of 625 to 5144. We see that 8 \times 625 = 5000 is the nearest. Now subtract 5000 from 5144 to get reminder 144. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }144
Since 144 is less than 625, stop the division. The reminder is 144. The topmost line 0008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}