Evaluate
\frac{25693}{12}\approx 2141.083333333
Factor
\frac{25693}{2 ^ {2} \cdot 3} = 2141\frac{1}{12} = 2141.0833333333335
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)51386}\\\end{array}
Use the 1^{st} digit 5 from dividend 51386
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)51386}\\\end{array}
Since 5 is less than 24, use the next digit 1 from dividend 51386 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)51386}\\\end{array}
Use the 2^{nd} digit 1 from dividend 51386
\begin{array}{l}\phantom{24)}02\phantom{4}\\24\overline{)51386}\\\phantom{24)}\underline{\phantom{}48\phantom{999}}\\\phantom{24)9}3\\\end{array}
Find closest multiple of 24 to 51. We see that 2 \times 24 = 48 is the nearest. Now subtract 48 from 51 to get reminder 3. Add 2 to quotient.
\begin{array}{l}\phantom{24)}02\phantom{5}\\24\overline{)51386}\\\phantom{24)}\underline{\phantom{}48\phantom{999}}\\\phantom{24)9}33\\\end{array}
Use the 3^{rd} digit 3 from dividend 51386
\begin{array}{l}\phantom{24)}021\phantom{6}\\24\overline{)51386}\\\phantom{24)}\underline{\phantom{}48\phantom{999}}\\\phantom{24)9}33\\\phantom{24)}\underline{\phantom{9}24\phantom{99}}\\\phantom{24)99}9\\\end{array}
Find closest multiple of 24 to 33. We see that 1 \times 24 = 24 is the nearest. Now subtract 24 from 33 to get reminder 9. Add 1 to quotient.
\begin{array}{l}\phantom{24)}021\phantom{7}\\24\overline{)51386}\\\phantom{24)}\underline{\phantom{}48\phantom{999}}\\\phantom{24)9}33\\\phantom{24)}\underline{\phantom{9}24\phantom{99}}\\\phantom{24)99}98\\\end{array}
Use the 4^{th} digit 8 from dividend 51386
\begin{array}{l}\phantom{24)}0214\phantom{8}\\24\overline{)51386}\\\phantom{24)}\underline{\phantom{}48\phantom{999}}\\\phantom{24)9}33\\\phantom{24)}\underline{\phantom{9}24\phantom{99}}\\\phantom{24)99}98\\\phantom{24)}\underline{\phantom{99}96\phantom{9}}\\\phantom{24)999}2\\\end{array}
Find closest multiple of 24 to 98. We see that 4 \times 24 = 96 is the nearest. Now subtract 96 from 98 to get reminder 2. Add 4 to quotient.
\begin{array}{l}\phantom{24)}0214\phantom{9}\\24\overline{)51386}\\\phantom{24)}\underline{\phantom{}48\phantom{999}}\\\phantom{24)9}33\\\phantom{24)}\underline{\phantom{9}24\phantom{99}}\\\phantom{24)99}98\\\phantom{24)}\underline{\phantom{99}96\phantom{9}}\\\phantom{24)999}26\\\end{array}
Use the 5^{th} digit 6 from dividend 51386
\begin{array}{l}\phantom{24)}02141\phantom{10}\\24\overline{)51386}\\\phantom{24)}\underline{\phantom{}48\phantom{999}}\\\phantom{24)9}33\\\phantom{24)}\underline{\phantom{9}24\phantom{99}}\\\phantom{24)99}98\\\phantom{24)}\underline{\phantom{99}96\phantom{9}}\\\phantom{24)999}26\\\phantom{24)}\underline{\phantom{999}24\phantom{}}\\\phantom{24)9999}2\\\end{array}
Find closest multiple of 24 to 26. We see that 1 \times 24 = 24 is the nearest. Now subtract 24 from 26 to get reminder 2. Add 1 to quotient.
\text{Quotient: }2141 \text{Reminder: }2
Since 2 is less than 24, stop the division. The reminder is 2. The topmost line 02141 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2141.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}