Factor
\left(8r+s\right)\left(64r^{2}-8rs+s^{2}-7\right)
Evaluate
512r^{3}-56r+s^{3}-7s
Share
Copied to clipboard
512r^{3}-56r+s^{3}-7s
Consider 512r^{3}+s^{3}-56r-7s as a polynomial over variable r.
\left(8r+s\right)\left(64r^{2}-8rs+s^{2}-7\right)
Find one factor of the form kr^{m}+n, where kr^{m} divides the monomial with the highest power 512r^{3} and n divides the constant factor s^{3}-7s. One such factor is 8r+s. Factor the polynomial by dividing it by this factor.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}