Evaluate
\frac{5100000}{6767}\approx 753.657455298
Factor
\frac{2 ^ {5} \cdot 3 \cdot 5 ^ {5} \cdot 17}{67 \cdot 101} = 753\frac{4449}{6767} = 753.6574552977686
Share
Copied to clipboard
\begin{array}{l}\phantom{6767)}\phantom{1}\\6767\overline{)5100000}\\\end{array}
Use the 1^{st} digit 5 from dividend 5100000
\begin{array}{l}\phantom{6767)}0\phantom{2}\\6767\overline{)5100000}\\\end{array}
Since 5 is less than 6767, use the next digit 1 from dividend 5100000 and add 0 to the quotient
\begin{array}{l}\phantom{6767)}0\phantom{3}\\6767\overline{)5100000}\\\end{array}
Use the 2^{nd} digit 1 from dividend 5100000
\begin{array}{l}\phantom{6767)}00\phantom{4}\\6767\overline{)5100000}\\\end{array}
Since 51 is less than 6767, use the next digit 0 from dividend 5100000 and add 0 to the quotient
\begin{array}{l}\phantom{6767)}00\phantom{5}\\6767\overline{)5100000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 5100000
\begin{array}{l}\phantom{6767)}000\phantom{6}\\6767\overline{)5100000}\\\end{array}
Since 510 is less than 6767, use the next digit 0 from dividend 5100000 and add 0 to the quotient
\begin{array}{l}\phantom{6767)}000\phantom{7}\\6767\overline{)5100000}\\\end{array}
Use the 4^{th} digit 0 from dividend 5100000
\begin{array}{l}\phantom{6767)}0000\phantom{8}\\6767\overline{)5100000}\\\end{array}
Since 5100 is less than 6767, use the next digit 0 from dividend 5100000 and add 0 to the quotient
\begin{array}{l}\phantom{6767)}0000\phantom{9}\\6767\overline{)5100000}\\\end{array}
Use the 5^{th} digit 0 from dividend 5100000
\begin{array}{l}\phantom{6767)}00007\phantom{10}\\6767\overline{)5100000}\\\phantom{6767)}\underline{\phantom{}47369\phantom{99}}\\\phantom{6767)9}3631\\\end{array}
Find closest multiple of 6767 to 51000. We see that 7 \times 6767 = 47369 is the nearest. Now subtract 47369 from 51000 to get reminder 3631. Add 7 to quotient.
\begin{array}{l}\phantom{6767)}00007\phantom{11}\\6767\overline{)5100000}\\\phantom{6767)}\underline{\phantom{}47369\phantom{99}}\\\phantom{6767)9}36310\\\end{array}
Use the 6^{th} digit 0 from dividend 5100000
\begin{array}{l}\phantom{6767)}000075\phantom{12}\\6767\overline{)5100000}\\\phantom{6767)}\underline{\phantom{}47369\phantom{99}}\\\phantom{6767)9}36310\\\phantom{6767)}\underline{\phantom{9}33835\phantom{9}}\\\phantom{6767)99}2475\\\end{array}
Find closest multiple of 6767 to 36310. We see that 5 \times 6767 = 33835 is the nearest. Now subtract 33835 from 36310 to get reminder 2475. Add 5 to quotient.
\begin{array}{l}\phantom{6767)}000075\phantom{13}\\6767\overline{)5100000}\\\phantom{6767)}\underline{\phantom{}47369\phantom{99}}\\\phantom{6767)9}36310\\\phantom{6767)}\underline{\phantom{9}33835\phantom{9}}\\\phantom{6767)99}24750\\\end{array}
Use the 7^{th} digit 0 from dividend 5100000
\begin{array}{l}\phantom{6767)}0000753\phantom{14}\\6767\overline{)5100000}\\\phantom{6767)}\underline{\phantom{}47369\phantom{99}}\\\phantom{6767)9}36310\\\phantom{6767)}\underline{\phantom{9}33835\phantom{9}}\\\phantom{6767)99}24750\\\phantom{6767)}\underline{\phantom{99}20301\phantom{}}\\\phantom{6767)999}4449\\\end{array}
Find closest multiple of 6767 to 24750. We see that 3 \times 6767 = 20301 is the nearest. Now subtract 20301 from 24750 to get reminder 4449. Add 3 to quotient.
\text{Quotient: }753 \text{Reminder: }4449
Since 4449 is less than 6767, stop the division. The reminder is 4449. The topmost line 0000753 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 753.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}