Evaluate
\frac{51}{32}=1.59375
Factor
\frac{3 \cdot 17}{2 ^ {5}} = 1\frac{19}{32} = 1.59375
Share
Copied to clipboard
\begin{array}{l}\phantom{32)}\phantom{1}\\32\overline{)51}\\\end{array}
Use the 1^{st} digit 5 from dividend 51
\begin{array}{l}\phantom{32)}0\phantom{2}\\32\overline{)51}\\\end{array}
Since 5 is less than 32, use the next digit 1 from dividend 51 and add 0 to the quotient
\begin{array}{l}\phantom{32)}0\phantom{3}\\32\overline{)51}\\\end{array}
Use the 2^{nd} digit 1 from dividend 51
\begin{array}{l}\phantom{32)}01\phantom{4}\\32\overline{)51}\\\phantom{32)}\underline{\phantom{}32\phantom{}}\\\phantom{32)}19\\\end{array}
Find closest multiple of 32 to 51. We see that 1 \times 32 = 32 is the nearest. Now subtract 32 from 51 to get reminder 19. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }19
Since 19 is less than 32, stop the division. The reminder is 19. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}