Verify
false
Share
Copied to clipboard
51\times \left(\frac{\sqrt{2}}{2}\right)^{2}+\left(\cos(45)\right)^{2}=1
Get the value of \sin(45) from trigonometric values table.
51\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+\left(\cos(45)\right)^{2}=1
To raise \frac{\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{51\left(\sqrt{2}\right)^{2}}{2^{2}}+\left(\cos(45)\right)^{2}=1
Express 51\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} as a single fraction.
\frac{51\left(\sqrt{2}\right)^{2}}{2^{2}}+\left(\frac{\sqrt{2}}{2}\right)^{2}=1
Get the value of \cos(45) from trigonometric values table.
\frac{51\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}=1
To raise \frac{\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{51\left(\sqrt{2}\right)^{2}+\left(\sqrt{2}\right)^{2}}{2^{2}}=1
Since \frac{51\left(\sqrt{2}\right)^{2}}{2^{2}} and \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{51\times 2+\left(\sqrt{2}\right)^{2}}{2^{2}}=1
The square of \sqrt{2} is 2.
\frac{102+\left(\sqrt{2}\right)^{2}}{2^{2}}=1
Multiply 51 and 2 to get 102.
\frac{102+2}{2^{2}}=1
The square of \sqrt{2} is 2.
\frac{104}{2^{2}}=1
Add 102 and 2 to get 104.
\frac{104}{4}=1
Calculate 2 to the power of 2 and get 4.
26=1
Divide 104 by 4 to get 26.
\text{false}
Compare 26 and 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}