Skip to main content
Verify
false
Tick mark Image

Share

51\times \left(\frac{\sqrt{2}}{2}\right)^{2}+\left(\cos(45)\right)^{2}=1
Get the value of \sin(45) from trigonometric values table.
51\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+\left(\cos(45)\right)^{2}=1
To raise \frac{\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{51\left(\sqrt{2}\right)^{2}}{2^{2}}+\left(\cos(45)\right)^{2}=1
Express 51\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} as a single fraction.
\frac{51\left(\sqrt{2}\right)^{2}}{2^{2}}+\left(\frac{\sqrt{2}}{2}\right)^{2}=1
Get the value of \cos(45) from trigonometric values table.
\frac{51\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}=1
To raise \frac{\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{51\left(\sqrt{2}\right)^{2}+\left(\sqrt{2}\right)^{2}}{2^{2}}=1
Since \frac{51\left(\sqrt{2}\right)^{2}}{2^{2}} and \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{51\times 2+\left(\sqrt{2}\right)^{2}}{2^{2}}=1
The square of \sqrt{2} is 2.
\frac{102+\left(\sqrt{2}\right)^{2}}{2^{2}}=1
Multiply 51 and 2 to get 102.
\frac{102+2}{2^{2}}=1
The square of \sqrt{2} is 2.
\frac{104}{2^{2}}=1
Add 102 and 2 to get 104.
\frac{104}{4}=1
Calculate 2 to the power of 2 and get 4.
26=1
Divide 104 by 4 to get 26.
\text{false}
Compare 26 and 1.