Evaluate
12
Factor
2^{2}\times 3
Share
Copied to clipboard
\begin{array}{l}\phantom{42)}\phantom{1}\\42\overline{)504}\\\end{array}
Use the 1^{st} digit 5 from dividend 504
\begin{array}{l}\phantom{42)}0\phantom{2}\\42\overline{)504}\\\end{array}
Since 5 is less than 42, use the next digit 0 from dividend 504 and add 0 to the quotient
\begin{array}{l}\phantom{42)}0\phantom{3}\\42\overline{)504}\\\end{array}
Use the 2^{nd} digit 0 from dividend 504
\begin{array}{l}\phantom{42)}01\phantom{4}\\42\overline{)504}\\\phantom{42)}\underline{\phantom{}42\phantom{9}}\\\phantom{42)9}8\\\end{array}
Find closest multiple of 42 to 50. We see that 1 \times 42 = 42 is the nearest. Now subtract 42 from 50 to get reminder 8. Add 1 to quotient.
\begin{array}{l}\phantom{42)}01\phantom{5}\\42\overline{)504}\\\phantom{42)}\underline{\phantom{}42\phantom{9}}\\\phantom{42)9}84\\\end{array}
Use the 3^{rd} digit 4 from dividend 504
\begin{array}{l}\phantom{42)}012\phantom{6}\\42\overline{)504}\\\phantom{42)}\underline{\phantom{}42\phantom{9}}\\\phantom{42)9}84\\\phantom{42)}\underline{\phantom{9}84\phantom{}}\\\phantom{42)999}0\\\end{array}
Find closest multiple of 42 to 84. We see that 2 \times 42 = 84 is the nearest. Now subtract 84 from 84 to get reminder 0. Add 2 to quotient.
\text{Quotient: }12 \text{Reminder: }0
Since 0 is less than 42, stop the division. The reminder is 0. The topmost line 012 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}