Evaluate
\frac{503}{68}\approx 7.397058824
Factor
\frac{503}{2 ^ {2} \cdot 17} = 7\frac{27}{68} = 7.397058823529412
Share
Copied to clipboard
\begin{array}{l}\phantom{68)}\phantom{1}\\68\overline{)503}\\\end{array}
Use the 1^{st} digit 5 from dividend 503
\begin{array}{l}\phantom{68)}0\phantom{2}\\68\overline{)503}\\\end{array}
Since 5 is less than 68, use the next digit 0 from dividend 503 and add 0 to the quotient
\begin{array}{l}\phantom{68)}0\phantom{3}\\68\overline{)503}\\\end{array}
Use the 2^{nd} digit 0 from dividend 503
\begin{array}{l}\phantom{68)}00\phantom{4}\\68\overline{)503}\\\end{array}
Since 50 is less than 68, use the next digit 3 from dividend 503 and add 0 to the quotient
\begin{array}{l}\phantom{68)}00\phantom{5}\\68\overline{)503}\\\end{array}
Use the 3^{rd} digit 3 from dividend 503
\begin{array}{l}\phantom{68)}007\phantom{6}\\68\overline{)503}\\\phantom{68)}\underline{\phantom{}476\phantom{}}\\\phantom{68)9}27\\\end{array}
Find closest multiple of 68 to 503. We see that 7 \times 68 = 476 is the nearest. Now subtract 476 from 503 to get reminder 27. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }27
Since 27 is less than 68, stop the division. The reminder is 27. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}