Evaluate
\frac{25}{2}=12.5
Factor
\frac{5 ^ {2}}{2} = 12\frac{1}{2} = 12.5
Share
Copied to clipboard
\begin{array}{l}\phantom{4000000)}\phantom{1}\\4000000\overline{)50000000}\\\end{array}
Use the 1^{st} digit 5 from dividend 50000000
\begin{array}{l}\phantom{4000000)}0\phantom{2}\\4000000\overline{)50000000}\\\end{array}
Since 5 is less than 4000000, use the next digit 0 from dividend 50000000 and add 0 to the quotient
\begin{array}{l}\phantom{4000000)}0\phantom{3}\\4000000\overline{)50000000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 50000000
\begin{array}{l}\phantom{4000000)}00\phantom{4}\\4000000\overline{)50000000}\\\end{array}
Since 50 is less than 4000000, use the next digit 0 from dividend 50000000 and add 0 to the quotient
\begin{array}{l}\phantom{4000000)}00\phantom{5}\\4000000\overline{)50000000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 50000000
\begin{array}{l}\phantom{4000000)}000\phantom{6}\\4000000\overline{)50000000}\\\end{array}
Since 500 is less than 4000000, use the next digit 0 from dividend 50000000 and add 0 to the quotient
\begin{array}{l}\phantom{4000000)}000\phantom{7}\\4000000\overline{)50000000}\\\end{array}
Use the 4^{th} digit 0 from dividend 50000000
\begin{array}{l}\phantom{4000000)}0000\phantom{8}\\4000000\overline{)50000000}\\\end{array}
Since 5000 is less than 4000000, use the next digit 0 from dividend 50000000 and add 0 to the quotient
\begin{array}{l}\phantom{4000000)}0000\phantom{9}\\4000000\overline{)50000000}\\\end{array}
Use the 5^{th} digit 0 from dividend 50000000
\begin{array}{l}\phantom{4000000)}00000\phantom{10}\\4000000\overline{)50000000}\\\end{array}
Since 50000 is less than 4000000, use the next digit 0 from dividend 50000000 and add 0 to the quotient
\begin{array}{l}\phantom{4000000)}00000\phantom{11}\\4000000\overline{)50000000}\\\end{array}
Use the 6^{th} digit 0 from dividend 50000000
\begin{array}{l}\phantom{4000000)}000000\phantom{12}\\4000000\overline{)50000000}\\\end{array}
Since 500000 is less than 4000000, use the next digit 0 from dividend 50000000 and add 0 to the quotient
\begin{array}{l}\phantom{4000000)}000000\phantom{13}\\4000000\overline{)50000000}\\\end{array}
Use the 7^{th} digit 0 from dividend 50000000
\begin{array}{l}\phantom{4000000)}0000001\phantom{14}\\4000000\overline{)50000000}\\\phantom{4000000)}\underline{\phantom{}4000000\phantom{9}}\\\phantom{4000000)}1000000\\\end{array}
Find closest multiple of 4000000 to 5000000. We see that 1 \times 4000000 = 4000000 is the nearest. Now subtract 4000000 from 5000000 to get reminder 1000000. Add 1 to quotient.
\begin{array}{l}\phantom{4000000)}0000001\phantom{15}\\4000000\overline{)50000000}\\\phantom{4000000)}\underline{\phantom{}4000000\phantom{9}}\\\phantom{4000000)}10000000\\\end{array}
Use the 8^{th} digit 0 from dividend 50000000
\begin{array}{l}\phantom{4000000)}00000012\phantom{16}\\4000000\overline{)50000000}\\\phantom{4000000)}\underline{\phantom{}4000000\phantom{9}}\\\phantom{4000000)}10000000\\\phantom{4000000)}\underline{\phantom{9}8000000\phantom{}}\\\phantom{4000000)9}2000000\\\end{array}
Find closest multiple of 4000000 to 10000000. We see that 2 \times 4000000 = 8000000 is the nearest. Now subtract 8000000 from 10000000 to get reminder 2000000. Add 2 to quotient.
\text{Quotient: }12 \text{Reminder: }2000000
Since 2000000 is less than 4000000, stop the division. The reminder is 2000000. The topmost line 00000012 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}