Evaluate
\frac{250000}{9}\approx 27777.777777778
Factor
\frac{2 ^ {4} \cdot 5 ^ {6}}{3 ^ {2}} = 27777\frac{7}{9} = 27777.777777777777
Share
Copied to clipboard
\begin{array}{l}\phantom{180)}\phantom{1}\\180\overline{)5000000}\\\end{array}
Use the 1^{st} digit 5 from dividend 5000000
\begin{array}{l}\phantom{180)}0\phantom{2}\\180\overline{)5000000}\\\end{array}
Since 5 is less than 180, use the next digit 0 from dividend 5000000 and add 0 to the quotient
\begin{array}{l}\phantom{180)}0\phantom{3}\\180\overline{)5000000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 5000000
\begin{array}{l}\phantom{180)}00\phantom{4}\\180\overline{)5000000}\\\end{array}
Since 50 is less than 180, use the next digit 0 from dividend 5000000 and add 0 to the quotient
\begin{array}{l}\phantom{180)}00\phantom{5}\\180\overline{)5000000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 5000000
\begin{array}{l}\phantom{180)}002\phantom{6}\\180\overline{)5000000}\\\phantom{180)}\underline{\phantom{}360\phantom{9999}}\\\phantom{180)}140\\\end{array}
Find closest multiple of 180 to 500. We see that 2 \times 180 = 360 is the nearest. Now subtract 360 from 500 to get reminder 140. Add 2 to quotient.
\begin{array}{l}\phantom{180)}002\phantom{7}\\180\overline{)5000000}\\\phantom{180)}\underline{\phantom{}360\phantom{9999}}\\\phantom{180)}1400\\\end{array}
Use the 4^{th} digit 0 from dividend 5000000
\begin{array}{l}\phantom{180)}0027\phantom{8}\\180\overline{)5000000}\\\phantom{180)}\underline{\phantom{}360\phantom{9999}}\\\phantom{180)}1400\\\phantom{180)}\underline{\phantom{}1260\phantom{999}}\\\phantom{180)9}140\\\end{array}
Find closest multiple of 180 to 1400. We see that 7 \times 180 = 1260 is the nearest. Now subtract 1260 from 1400 to get reminder 140. Add 7 to quotient.
\begin{array}{l}\phantom{180)}0027\phantom{9}\\180\overline{)5000000}\\\phantom{180)}\underline{\phantom{}360\phantom{9999}}\\\phantom{180)}1400\\\phantom{180)}\underline{\phantom{}1260\phantom{999}}\\\phantom{180)9}1400\\\end{array}
Use the 5^{th} digit 0 from dividend 5000000
\begin{array}{l}\phantom{180)}00277\phantom{10}\\180\overline{)5000000}\\\phantom{180)}\underline{\phantom{}360\phantom{9999}}\\\phantom{180)}1400\\\phantom{180)}\underline{\phantom{}1260\phantom{999}}\\\phantom{180)9}1400\\\phantom{180)}\underline{\phantom{9}1260\phantom{99}}\\\phantom{180)99}140\\\end{array}
Find closest multiple of 180 to 1400. We see that 7 \times 180 = 1260 is the nearest. Now subtract 1260 from 1400 to get reminder 140. Add 7 to quotient.
\begin{array}{l}\phantom{180)}00277\phantom{11}\\180\overline{)5000000}\\\phantom{180)}\underline{\phantom{}360\phantom{9999}}\\\phantom{180)}1400\\\phantom{180)}\underline{\phantom{}1260\phantom{999}}\\\phantom{180)9}1400\\\phantom{180)}\underline{\phantom{9}1260\phantom{99}}\\\phantom{180)99}1400\\\end{array}
Use the 6^{th} digit 0 from dividend 5000000
\begin{array}{l}\phantom{180)}002777\phantom{12}\\180\overline{)5000000}\\\phantom{180)}\underline{\phantom{}360\phantom{9999}}\\\phantom{180)}1400\\\phantom{180)}\underline{\phantom{}1260\phantom{999}}\\\phantom{180)9}1400\\\phantom{180)}\underline{\phantom{9}1260\phantom{99}}\\\phantom{180)99}1400\\\phantom{180)}\underline{\phantom{99}1260\phantom{9}}\\\phantom{180)999}140\\\end{array}
Find closest multiple of 180 to 1400. We see that 7 \times 180 = 1260 is the nearest. Now subtract 1260 from 1400 to get reminder 140. Add 7 to quotient.
\begin{array}{l}\phantom{180)}002777\phantom{13}\\180\overline{)5000000}\\\phantom{180)}\underline{\phantom{}360\phantom{9999}}\\\phantom{180)}1400\\\phantom{180)}\underline{\phantom{}1260\phantom{999}}\\\phantom{180)9}1400\\\phantom{180)}\underline{\phantom{9}1260\phantom{99}}\\\phantom{180)99}1400\\\phantom{180)}\underline{\phantom{99}1260\phantom{9}}\\\phantom{180)999}1400\\\end{array}
Use the 7^{th} digit 0 from dividend 5000000
\begin{array}{l}\phantom{180)}0027777\phantom{14}\\180\overline{)5000000}\\\phantom{180)}\underline{\phantom{}360\phantom{9999}}\\\phantom{180)}1400\\\phantom{180)}\underline{\phantom{}1260\phantom{999}}\\\phantom{180)9}1400\\\phantom{180)}\underline{\phantom{9}1260\phantom{99}}\\\phantom{180)99}1400\\\phantom{180)}\underline{\phantom{99}1260\phantom{9}}\\\phantom{180)999}1400\\\phantom{180)}\underline{\phantom{999}1260\phantom{}}\\\phantom{180)9999}140\\\end{array}
Find closest multiple of 180 to 1400. We see that 7 \times 180 = 1260 is the nearest. Now subtract 1260 from 1400 to get reminder 140. Add 7 to quotient.
\text{Quotient: }27777 \text{Reminder: }140
Since 140 is less than 180, stop the division. The reminder is 140. The topmost line 0027777 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 27777.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}