Solve for x (complex solution)
x=\sqrt{6109}-75\approx 3.160092119
x=-\left(\sqrt{6109}+75\right)\approx -153.160092119
Solve for x
x=\sqrt{6109}-75\approx 3.160092119
x=-\sqrt{6109}-75\approx -153.160092119
Graph
Share
Copied to clipboard
-x^{2}-150x+5000=4516
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-x^{2}-150x+5000-4516=4516-4516
Subtract 4516 from both sides of the equation.
-x^{2}-150x+5000-4516=0
Subtracting 4516 from itself leaves 0.
-x^{2}-150x+484=0
Subtract 4516 from 5000.
x=\frac{-\left(-150\right)±\sqrt{\left(-150\right)^{2}-4\left(-1\right)\times 484}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -150 for b, and 484 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-150\right)±\sqrt{22500-4\left(-1\right)\times 484}}{2\left(-1\right)}
Square -150.
x=\frac{-\left(-150\right)±\sqrt{22500+4\times 484}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-150\right)±\sqrt{22500+1936}}{2\left(-1\right)}
Multiply 4 times 484.
x=\frac{-\left(-150\right)±\sqrt{24436}}{2\left(-1\right)}
Add 22500 to 1936.
x=\frac{-\left(-150\right)±2\sqrt{6109}}{2\left(-1\right)}
Take the square root of 24436.
x=\frac{150±2\sqrt{6109}}{2\left(-1\right)}
The opposite of -150 is 150.
x=\frac{150±2\sqrt{6109}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{6109}+150}{-2}
Now solve the equation x=\frac{150±2\sqrt{6109}}{-2} when ± is plus. Add 150 to 2\sqrt{6109}.
x=-\left(\sqrt{6109}+75\right)
Divide 150+2\sqrt{6109} by -2.
x=\frac{150-2\sqrt{6109}}{-2}
Now solve the equation x=\frac{150±2\sqrt{6109}}{-2} when ± is minus. Subtract 2\sqrt{6109} from 150.
x=\sqrt{6109}-75
Divide 150-2\sqrt{6109} by -2.
x=-\left(\sqrt{6109}+75\right) x=\sqrt{6109}-75
The equation is now solved.
-x^{2}-150x+5000=4516
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}-150x+5000-5000=4516-5000
Subtract 5000 from both sides of the equation.
-x^{2}-150x=4516-5000
Subtracting 5000 from itself leaves 0.
-x^{2}-150x=-484
Subtract 5000 from 4516.
\frac{-x^{2}-150x}{-1}=-\frac{484}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{150}{-1}\right)x=-\frac{484}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+150x=-\frac{484}{-1}
Divide -150 by -1.
x^{2}+150x=484
Divide -484 by -1.
x^{2}+150x+75^{2}=484+75^{2}
Divide 150, the coefficient of the x term, by 2 to get 75. Then add the square of 75 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+150x+5625=484+5625
Square 75.
x^{2}+150x+5625=6109
Add 484 to 5625.
\left(x+75\right)^{2}=6109
Factor x^{2}+150x+5625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+75\right)^{2}}=\sqrt{6109}
Take the square root of both sides of the equation.
x+75=\sqrt{6109} x+75=-\sqrt{6109}
Simplify.
x=\sqrt{6109}-75 x=-\sqrt{6109}-75
Subtract 75 from both sides of the equation.
-x^{2}-150x+5000=4516
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-x^{2}-150x+5000-4516=4516-4516
Subtract 4516 from both sides of the equation.
-x^{2}-150x+5000-4516=0
Subtracting 4516 from itself leaves 0.
-x^{2}-150x+484=0
Subtract 4516 from 5000.
x=\frac{-\left(-150\right)±\sqrt{\left(-150\right)^{2}-4\left(-1\right)\times 484}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -150 for b, and 484 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-150\right)±\sqrt{22500-4\left(-1\right)\times 484}}{2\left(-1\right)}
Square -150.
x=\frac{-\left(-150\right)±\sqrt{22500+4\times 484}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-150\right)±\sqrt{22500+1936}}{2\left(-1\right)}
Multiply 4 times 484.
x=\frac{-\left(-150\right)±\sqrt{24436}}{2\left(-1\right)}
Add 22500 to 1936.
x=\frac{-\left(-150\right)±2\sqrt{6109}}{2\left(-1\right)}
Take the square root of 24436.
x=\frac{150±2\sqrt{6109}}{2\left(-1\right)}
The opposite of -150 is 150.
x=\frac{150±2\sqrt{6109}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{6109}+150}{-2}
Now solve the equation x=\frac{150±2\sqrt{6109}}{-2} when ± is plus. Add 150 to 2\sqrt{6109}.
x=-\left(\sqrt{6109}+75\right)
Divide 150+2\sqrt{6109} by -2.
x=\frac{150-2\sqrt{6109}}{-2}
Now solve the equation x=\frac{150±2\sqrt{6109}}{-2} when ± is minus. Subtract 2\sqrt{6109} from 150.
x=\sqrt{6109}-75
Divide 150-2\sqrt{6109} by -2.
x=-\left(\sqrt{6109}+75\right) x=\sqrt{6109}-75
The equation is now solved.
-x^{2}-150x+5000=4516
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}-150x+5000-5000=4516-5000
Subtract 5000 from both sides of the equation.
-x^{2}-150x=4516-5000
Subtracting 5000 from itself leaves 0.
-x^{2}-150x=-484
Subtract 5000 from 4516.
\frac{-x^{2}-150x}{-1}=-\frac{484}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{150}{-1}\right)x=-\frac{484}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+150x=-\frac{484}{-1}
Divide -150 by -1.
x^{2}+150x=484
Divide -484 by -1.
x^{2}+150x+75^{2}=484+75^{2}
Divide 150, the coefficient of the x term, by 2 to get 75. Then add the square of 75 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+150x+5625=484+5625
Square 75.
x^{2}+150x+5625=6109
Add 484 to 5625.
\left(x+75\right)^{2}=6109
Factor x^{2}+150x+5625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+75\right)^{2}}=\sqrt{6109}
Take the square root of both sides of the equation.
x+75=\sqrt{6109} x+75=-\sqrt{6109}
Simplify.
x=\sqrt{6109}-75 x=-\sqrt{6109}-75
Subtract 75 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}