Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5000x^{2}-2870,52x-1698,31=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2870,52\right)±\sqrt{\left(-2870,52\right)^{2}-4\times 5000\left(-1698,31\right)}}{2\times 5000}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5000 for a, -2870,52 for b, and -1698,31 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2870,52\right)±\sqrt{8239885,0704-4\times 5000\left(-1698,31\right)}}{2\times 5000}
Square -2870,52 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-2870,52\right)±\sqrt{8239885,0704-20000\left(-1698,31\right)}}{2\times 5000}
Multiply -4 times 5000.
x=\frac{-\left(-2870,52\right)±\sqrt{8239885,0704+33966200}}{2\times 5000}
Multiply -20000 times -1698,31.
x=\frac{-\left(-2870,52\right)±\sqrt{42206085,0704}}{2\times 5000}
Add 8239885,0704 to 33966200.
x=\frac{-\left(-2870,52\right)±\frac{\sqrt{26378803169}}{25}}{2\times 5000}
Take the square root of 42206085,0704.
x=\frac{2870,52±\frac{\sqrt{26378803169}}{25}}{2\times 5000}
The opposite of -2870,52 is 2870,52.
x=\frac{2870,52±\frac{\sqrt{26378803169}}{25}}{10000}
Multiply 2 times 5000.
x=\frac{\sqrt{26378803169}+71763}{25\times 10000}
Now solve the equation x=\frac{2870,52±\frac{\sqrt{26378803169}}{25}}{10000} when ± is plus. Add 2870,52 to \frac{\sqrt{26378803169}}{25}.
x=\frac{\sqrt{26378803169}+71763}{250000}
Divide \frac{71763+\sqrt{26378803169}}{25} by 10000.
x=\frac{71763-\sqrt{26378803169}}{25\times 10000}
Now solve the equation x=\frac{2870,52±\frac{\sqrt{26378803169}}{25}}{10000} when ± is minus. Subtract \frac{\sqrt{26378803169}}{25} from 2870,52.
x=\frac{71763-\sqrt{26378803169}}{250000}
Divide \frac{71763-\sqrt{26378803169}}{25} by 10000.
x=\frac{\sqrt{26378803169}+71763}{250000} x=\frac{71763-\sqrt{26378803169}}{250000}
The equation is now solved.
5000x^{2}-2870,52x-1698,31=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
5000x^{2}-2870,52x-1698,31-\left(-1698,31\right)=-\left(-1698,31\right)
Add 1698,31 to both sides of the equation.
5000x^{2}-2870,52x=-\left(-1698,31\right)
Subtracting -1698,31 from itself leaves 0.
5000x^{2}-2870,52x=1698,31
Subtract -1698,31 from 0.
\frac{5000x^{2}-2870,52x}{5000}=\frac{1698,31}{5000}
Divide both sides by 5000.
x^{2}+\left(-\frac{2870,52}{5000}\right)x=\frac{1698,31}{5000}
Dividing by 5000 undoes the multiplication by 5000.
x^{2}-0,574104x=\frac{1698,31}{5000}
Divide -2870,52 by 5000.
x^{2}-0,574104x=0,339662
Divide 1698,31 by 5000.
x^{2}-0,574104x+\left(-0,287052\right)^{2}=0,339662+\left(-0,287052\right)^{2}
Divide -0,574104, the coefficient of the x term, by 2 to get -0,287052. Then add the square of -0,287052 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-0,574104x+0,082398850704=0,339662+0,082398850704
Square -0,287052 by squaring both the numerator and the denominator of the fraction.
x^{2}-0,574104x+0,082398850704=0,422060850704
Add 0,339662 to 0,082398850704 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-0,287052\right)^{2}=0,422060850704
Factor x^{2}-0,574104x+0,082398850704. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-0,287052\right)^{2}}=\sqrt{0,422060850704}
Take the square root of both sides of the equation.
x-0,287052=\frac{\sqrt{26378803169}}{250000} x-0,287052=-\frac{\sqrt{26378803169}}{250000}
Simplify.
x=\frac{\sqrt{26378803169}+71763}{250000} x=\frac{71763-\sqrt{26378803169}}{250000}
Add 0,287052 to both sides of the equation.