Evaluate
\frac{25000x^{2}}{37}
Differentiate w.r.t. x
\frac{50000x}{37}
Graph
Share
Copied to clipboard
\frac{5000}{74}\times 1x^{2}\times 10
Multiply x and x to get x^{2}.
\frac{2500}{37}\times 1x^{2}\times 10
Reduce the fraction \frac{5000}{74} to lowest terms by extracting and canceling out 2.
\frac{2500}{37}x^{2}\times 10
Multiply \frac{2500}{37} and 1 to get \frac{2500}{37}.
\frac{2500\times 10}{37}x^{2}
Express \frac{2500}{37}\times 10 as a single fraction.
\frac{25000}{37}x^{2}
Multiply 2500 and 10 to get 25000.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5000}{74}\times 1x^{2}\times 10)
Multiply x and x to get x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2500}{37}\times 1x^{2}\times 10)
Reduce the fraction \frac{5000}{74} to lowest terms by extracting and canceling out 2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2500}{37}x^{2}\times 10)
Multiply \frac{2500}{37} and 1 to get \frac{2500}{37}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2500\times 10}{37}x^{2})
Express \frac{2500}{37}\times 10 as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{25000}{37}x^{2})
Multiply 2500 and 10 to get 25000.
2\times \frac{25000}{37}x^{2-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{50000}{37}x^{2-1}
Multiply 2 times \frac{25000}{37}.
\frac{50000}{37}x^{1}
Subtract 1 from 2.
\frac{50000}{37}x
For any term t, t^{1}=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}