Evaluate
\frac{50}{3}\approx 16.666666667
Factor
\frac{2 \cdot 5 ^ {2}}{3} = 16\frac{2}{3} = 16.666666666666668
Share
Copied to clipboard
\begin{array}{l}\phantom{300)}\phantom{1}\\300\overline{)5000}\\\end{array}
Use the 1^{st} digit 5 from dividend 5000
\begin{array}{l}\phantom{300)}0\phantom{2}\\300\overline{)5000}\\\end{array}
Since 5 is less than 300, use the next digit 0 from dividend 5000 and add 0 to the quotient
\begin{array}{l}\phantom{300)}0\phantom{3}\\300\overline{)5000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 5000
\begin{array}{l}\phantom{300)}00\phantom{4}\\300\overline{)5000}\\\end{array}
Since 50 is less than 300, use the next digit 0 from dividend 5000 and add 0 to the quotient
\begin{array}{l}\phantom{300)}00\phantom{5}\\300\overline{)5000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 5000
\begin{array}{l}\phantom{300)}001\phantom{6}\\300\overline{)5000}\\\phantom{300)}\underline{\phantom{}300\phantom{9}}\\\phantom{300)}200\\\end{array}
Find closest multiple of 300 to 500. We see that 1 \times 300 = 300 is the nearest. Now subtract 300 from 500 to get reminder 200. Add 1 to quotient.
\begin{array}{l}\phantom{300)}001\phantom{7}\\300\overline{)5000}\\\phantom{300)}\underline{\phantom{}300\phantom{9}}\\\phantom{300)}2000\\\end{array}
Use the 4^{th} digit 0 from dividend 5000
\begin{array}{l}\phantom{300)}0016\phantom{8}\\300\overline{)5000}\\\phantom{300)}\underline{\phantom{}300\phantom{9}}\\\phantom{300)}2000\\\phantom{300)}\underline{\phantom{}1800\phantom{}}\\\phantom{300)9}200\\\end{array}
Find closest multiple of 300 to 2000. We see that 6 \times 300 = 1800 is the nearest. Now subtract 1800 from 2000 to get reminder 200. Add 6 to quotient.
\text{Quotient: }16 \text{Reminder: }200
Since 200 is less than 300, stop the division. The reminder is 200. The topmost line 0016 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}