Solve for x
x = \frac{1130 - 10 \sqrt{1105}}{9} \approx 88.620510803
Graph
Share
Copied to clipboard
500-\left(3x+140\right)=10\sqrt{x}
Subtract 3x+140 from both sides of the equation.
500-3x-140=10\sqrt{x}
To find the opposite of 3x+140, find the opposite of each term.
360-3x=10\sqrt{x}
Subtract 140 from 500 to get 360.
\left(360-3x\right)^{2}=\left(10\sqrt{x}\right)^{2}
Square both sides of the equation.
129600-2160x+9x^{2}=\left(10\sqrt{x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(360-3x\right)^{2}.
129600-2160x+9x^{2}=10^{2}\left(\sqrt{x}\right)^{2}
Expand \left(10\sqrt{x}\right)^{2}.
129600-2160x+9x^{2}=100\left(\sqrt{x}\right)^{2}
Calculate 10 to the power of 2 and get 100.
129600-2160x+9x^{2}=100x
Calculate \sqrt{x} to the power of 2 and get x.
129600-2160x+9x^{2}-100x=0
Subtract 100x from both sides.
129600-2260x+9x^{2}=0
Combine -2160x and -100x to get -2260x.
9x^{2}-2260x+129600=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2260\right)±\sqrt{\left(-2260\right)^{2}-4\times 9\times 129600}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -2260 for b, and 129600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2260\right)±\sqrt{5107600-4\times 9\times 129600}}{2\times 9}
Square -2260.
x=\frac{-\left(-2260\right)±\sqrt{5107600-36\times 129600}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-2260\right)±\sqrt{5107600-4665600}}{2\times 9}
Multiply -36 times 129600.
x=\frac{-\left(-2260\right)±\sqrt{442000}}{2\times 9}
Add 5107600 to -4665600.
x=\frac{-\left(-2260\right)±20\sqrt{1105}}{2\times 9}
Take the square root of 442000.
x=\frac{2260±20\sqrt{1105}}{2\times 9}
The opposite of -2260 is 2260.
x=\frac{2260±20\sqrt{1105}}{18}
Multiply 2 times 9.
x=\frac{20\sqrt{1105}+2260}{18}
Now solve the equation x=\frac{2260±20\sqrt{1105}}{18} when ± is plus. Add 2260 to 20\sqrt{1105}.
x=\frac{10\sqrt{1105}+1130}{9}
Divide 2260+20\sqrt{1105} by 18.
x=\frac{2260-20\sqrt{1105}}{18}
Now solve the equation x=\frac{2260±20\sqrt{1105}}{18} when ± is minus. Subtract 20\sqrt{1105} from 2260.
x=\frac{1130-10\sqrt{1105}}{9}
Divide 2260-20\sqrt{1105} by 18.
x=\frac{10\sqrt{1105}+1130}{9} x=\frac{1130-10\sqrt{1105}}{9}
The equation is now solved.
500=3\times \frac{10\sqrt{1105}+1130}{9}+10\sqrt{\frac{10\sqrt{1105}+1130}{9}}+140
Substitute \frac{10\sqrt{1105}+1130}{9} for x in the equation 500=3x+10\sqrt{x}+140.
500=\frac{20}{3}\times 1105^{\frac{1}{2}}+\frac{1600}{3}
Simplify. The value x=\frac{10\sqrt{1105}+1130}{9} does not satisfy the equation.
500=3\times \frac{1130-10\sqrt{1105}}{9}+10\sqrt{\frac{1130-10\sqrt{1105}}{9}}+140
Substitute \frac{1130-10\sqrt{1105}}{9} for x in the equation 500=3x+10\sqrt{x}+140.
500=500
Simplify. The value x=\frac{1130-10\sqrt{1105}}{9} satisfies the equation.
x=\frac{1130-10\sqrt{1105}}{9}
Equation 360-3x=10\sqrt{x} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}