Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

4\left(125r^{3}-27t^{3}\right)
Factor out 4.
\left(5r-3t\right)\left(25r^{2}+15rt+9t^{2}\right)
Consider 125r^{3}-27t^{3}. Rewrite 125r^{3}-27t^{3} as \left(5r\right)^{3}-\left(3t\right)^{3}. The difference of cubes can be factored using the rule: a^{3}-b^{3}=\left(a-b\right)\left(a^{2}+ab+b^{2}\right).
4\left(5r-3t\right)\left(25r^{2}+15rt+9t^{2}\right)
Rewrite the complete factored expression.