Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

500x^{2}+496x+186=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-496±\sqrt{496^{2}-4\times 500\times 186}}{2\times 500}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 500 for a, 496 for b, and 186 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-496±\sqrt{246016-4\times 500\times 186}}{2\times 500}
Square 496.
x=\frac{-496±\sqrt{246016-2000\times 186}}{2\times 500}
Multiply -4 times 500.
x=\frac{-496±\sqrt{246016-372000}}{2\times 500}
Multiply -2000 times 186.
x=\frac{-496±\sqrt{-125984}}{2\times 500}
Add 246016 to -372000.
x=\frac{-496±4\sqrt{7874}i}{2\times 500}
Take the square root of -125984.
x=\frac{-496±4\sqrt{7874}i}{1000}
Multiply 2 times 500.
x=\frac{-496+4\sqrt{7874}i}{1000}
Now solve the equation x=\frac{-496±4\sqrt{7874}i}{1000} when ± is plus. Add -496 to 4i\sqrt{7874}.
x=\frac{\sqrt{7874}i}{250}-\frac{62}{125}
Divide -496+4i\sqrt{7874} by 1000.
x=\frac{-4\sqrt{7874}i-496}{1000}
Now solve the equation x=\frac{-496±4\sqrt{7874}i}{1000} when ± is minus. Subtract 4i\sqrt{7874} from -496.
x=-\frac{\sqrt{7874}i}{250}-\frac{62}{125}
Divide -496-4i\sqrt{7874} by 1000.
x=\frac{\sqrt{7874}i}{250}-\frac{62}{125} x=-\frac{\sqrt{7874}i}{250}-\frac{62}{125}
The equation is now solved.
500x^{2}+496x+186=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
500x^{2}+496x+186-186=-186
Subtract 186 from both sides of the equation.
500x^{2}+496x=-186
Subtracting 186 from itself leaves 0.
\frac{500x^{2}+496x}{500}=-\frac{186}{500}
Divide both sides by 500.
x^{2}+\frac{496}{500}x=-\frac{186}{500}
Dividing by 500 undoes the multiplication by 500.
x^{2}+\frac{124}{125}x=-\frac{186}{500}
Reduce the fraction \frac{496}{500} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{124}{125}x=-\frac{93}{250}
Reduce the fraction \frac{-186}{500} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{124}{125}x+\left(\frac{62}{125}\right)^{2}=-\frac{93}{250}+\left(\frac{62}{125}\right)^{2}
Divide \frac{124}{125}, the coefficient of the x term, by 2 to get \frac{62}{125}. Then add the square of \frac{62}{125} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{124}{125}x+\frac{3844}{15625}=-\frac{93}{250}+\frac{3844}{15625}
Square \frac{62}{125} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{124}{125}x+\frac{3844}{15625}=-\frac{3937}{31250}
Add -\frac{93}{250} to \frac{3844}{15625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{62}{125}\right)^{2}=-\frac{3937}{31250}
Factor x^{2}+\frac{124}{125}x+\frac{3844}{15625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{62}{125}\right)^{2}}=\sqrt{-\frac{3937}{31250}}
Take the square root of both sides of the equation.
x+\frac{62}{125}=\frac{\sqrt{7874}i}{250} x+\frac{62}{125}=-\frac{\sqrt{7874}i}{250}
Simplify.
x=\frac{\sqrt{7874}i}{250}-\frac{62}{125} x=-\frac{\sqrt{7874}i}{250}-\frac{62}{125}
Subtract \frac{62}{125} from both sides of the equation.