Solve for x_3
x_{3}=\frac{1250000000000000x+625000000000000000\sqrt{3}-625000000000000000}{915063509461097}
Solve for x
x=\frac{915063509461097x_{3}}{1250000000000000}+500-500\sqrt{3}
Graph
Share
Copied to clipboard
500 \sqrt{3} + x = 500 + x 3.7320508075688776
Evaluate trigonometric functions in the problem
500+x_{3}\times 0.7320508075688776=500\sqrt{3}+x
Swap sides so that all variable terms are on the left hand side.
x_{3}\times 0.7320508075688776=500\sqrt{3}+x-500
Subtract 500 from both sides.
0.7320508075688776x_{3}=x+500\sqrt{3}-500
The equation is in standard form.
\frac{0.7320508075688776x_{3}}{0.7320508075688776}=\frac{x+500\sqrt{3}-500}{0.7320508075688776}
Divide both sides of the equation by 0.7320508075688776, which is the same as multiplying both sides by the reciprocal of the fraction.
x_{3}=\frac{x+500\sqrt{3}-500}{0.7320508075688776}
Dividing by 0.7320508075688776 undoes the multiplication by 0.7320508075688776.
x_{3}=\frac{1250000000000000x+625000000000000000\sqrt{3}-625000000000000000}{915063509461097}
Divide 500\sqrt{3}+x-500 by 0.7320508075688776 by multiplying 500\sqrt{3}+x-500 by the reciprocal of 0.7320508075688776.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}