Evaluate
\frac{125}{14}\approx 8.928571429
Factor
\frac{5 ^ {3}}{2 \cdot 7} = 8\frac{13}{14} = 8.928571428571429
Share
Copied to clipboard
\begin{array}{l}\phantom{56)}\phantom{1}\\56\overline{)500}\\\end{array}
Use the 1^{st} digit 5 from dividend 500
\begin{array}{l}\phantom{56)}0\phantom{2}\\56\overline{)500}\\\end{array}
Since 5 is less than 56, use the next digit 0 from dividend 500 and add 0 to the quotient
\begin{array}{l}\phantom{56)}0\phantom{3}\\56\overline{)500}\\\end{array}
Use the 2^{nd} digit 0 from dividend 500
\begin{array}{l}\phantom{56)}00\phantom{4}\\56\overline{)500}\\\end{array}
Since 50 is less than 56, use the next digit 0 from dividend 500 and add 0 to the quotient
\begin{array}{l}\phantom{56)}00\phantom{5}\\56\overline{)500}\\\end{array}
Use the 3^{rd} digit 0 from dividend 500
\begin{array}{l}\phantom{56)}008\phantom{6}\\56\overline{)500}\\\phantom{56)}\underline{\phantom{}448\phantom{}}\\\phantom{56)9}52\\\end{array}
Find closest multiple of 56 to 500. We see that 8 \times 56 = 448 is the nearest. Now subtract 448 from 500 to get reminder 52. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }52
Since 52 is less than 56, stop the division. The reminder is 52. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}