Evaluate
\frac{125}{93}\approx 1.344086022
Factor
\frac{5 ^ {3}}{3 \cdot 31} = 1\frac{32}{93} = 1.3440860215053763
Share
Copied to clipboard
\begin{array}{l}\phantom{372)}\phantom{1}\\372\overline{)500}\\\end{array}
Use the 1^{st} digit 5 from dividend 500
\begin{array}{l}\phantom{372)}0\phantom{2}\\372\overline{)500}\\\end{array}
Since 5 is less than 372, use the next digit 0 from dividend 500 and add 0 to the quotient
\begin{array}{l}\phantom{372)}0\phantom{3}\\372\overline{)500}\\\end{array}
Use the 2^{nd} digit 0 from dividend 500
\begin{array}{l}\phantom{372)}00\phantom{4}\\372\overline{)500}\\\end{array}
Since 50 is less than 372, use the next digit 0 from dividend 500 and add 0 to the quotient
\begin{array}{l}\phantom{372)}00\phantom{5}\\372\overline{)500}\\\end{array}
Use the 3^{rd} digit 0 from dividend 500
\begin{array}{l}\phantom{372)}001\phantom{6}\\372\overline{)500}\\\phantom{372)}\underline{\phantom{}372\phantom{}}\\\phantom{372)}128\\\end{array}
Find closest multiple of 372 to 500. We see that 1 \times 372 = 372 is the nearest. Now subtract 372 from 500 to get reminder 128. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }128
Since 128 is less than 372, stop the division. The reminder is 128. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}