Solve for x
x=50
x=-50
Graph
Share
Copied to clipboard
500\times 5=x^{2}
Multiply both sides by 5, the reciprocal of \frac{1}{5}.
2500=x^{2}
Multiply 500 and 5 to get 2500.
x^{2}=2500
Swap sides so that all variable terms are on the left hand side.
x^{2}-2500=0
Subtract 2500 from both sides.
\left(x-50\right)\left(x+50\right)=0
Consider x^{2}-2500. Rewrite x^{2}-2500 as x^{2}-50^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=50 x=-50
To find equation solutions, solve x-50=0 and x+50=0.
500\times 5=x^{2}
Multiply both sides by 5, the reciprocal of \frac{1}{5}.
2500=x^{2}
Multiply 500 and 5 to get 2500.
x^{2}=2500
Swap sides so that all variable terms are on the left hand side.
x=50 x=-50
Take the square root of both sides of the equation.
500\times 5=x^{2}
Multiply both sides by 5, the reciprocal of \frac{1}{5}.
2500=x^{2}
Multiply 500 and 5 to get 2500.
x^{2}=2500
Swap sides so that all variable terms are on the left hand side.
x^{2}-2500=0
Subtract 2500 from both sides.
x=\frac{0±\sqrt{0^{2}-4\left(-2500\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -2500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-2500\right)}}{2}
Square 0.
x=\frac{0±\sqrt{10000}}{2}
Multiply -4 times -2500.
x=\frac{0±100}{2}
Take the square root of 10000.
x=50
Now solve the equation x=\frac{0±100}{2} when ± is plus. Divide 100 by 2.
x=-50
Now solve the equation x=\frac{0±100}{2} when ± is minus. Divide -100 by 2.
x=50 x=-50
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}