Evaluate
\frac{50}{3}\approx 16.666666667
Factor
\frac{2 \cdot 5 ^ {2}}{3} = 16\frac{2}{3} = 16.666666666666668
Share
Copied to clipboard
\begin{array}{l}\phantom{30)}\phantom{1}\\30\overline{)500}\\\end{array}
Use the 1^{st} digit 5 from dividend 500
\begin{array}{l}\phantom{30)}0\phantom{2}\\30\overline{)500}\\\end{array}
Since 5 is less than 30, use the next digit 0 from dividend 500 and add 0 to the quotient
\begin{array}{l}\phantom{30)}0\phantom{3}\\30\overline{)500}\\\end{array}
Use the 2^{nd} digit 0 from dividend 500
\begin{array}{l}\phantom{30)}01\phantom{4}\\30\overline{)500}\\\phantom{30)}\underline{\phantom{}30\phantom{9}}\\\phantom{30)}20\\\end{array}
Find closest multiple of 30 to 50. We see that 1 \times 30 = 30 is the nearest. Now subtract 30 from 50 to get reminder 20. Add 1 to quotient.
\begin{array}{l}\phantom{30)}01\phantom{5}\\30\overline{)500}\\\phantom{30)}\underline{\phantom{}30\phantom{9}}\\\phantom{30)}200\\\end{array}
Use the 3^{rd} digit 0 from dividend 500
\begin{array}{l}\phantom{30)}016\phantom{6}\\30\overline{)500}\\\phantom{30)}\underline{\phantom{}30\phantom{9}}\\\phantom{30)}200\\\phantom{30)}\underline{\phantom{}180\phantom{}}\\\phantom{30)9}20\\\end{array}
Find closest multiple of 30 to 200. We see that 6 \times 30 = 180 is the nearest. Now subtract 180 from 200 to get reminder 20. Add 6 to quotient.
\text{Quotient: }16 \text{Reminder: }20
Since 20 is less than 30, stop the division. The reminder is 20. The topmost line 016 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}