Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-37x+50=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-37\right)±\sqrt{\left(-37\right)^{2}-4\times 50}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-37\right)±\sqrt{1369-4\times 50}}{2}
Square -37.
x=\frac{-\left(-37\right)±\sqrt{1369-200}}{2}
Multiply -4 times 50.
x=\frac{-\left(-37\right)±\sqrt{1169}}{2}
Add 1369 to -200.
x=\frac{37±\sqrt{1169}}{2}
The opposite of -37 is 37.
x=\frac{\sqrt{1169}+37}{2}
Now solve the equation x=\frac{37±\sqrt{1169}}{2} when ± is plus. Add 37 to \sqrt{1169}.
x=\frac{37-\sqrt{1169}}{2}
Now solve the equation x=\frac{37±\sqrt{1169}}{2} when ± is minus. Subtract \sqrt{1169} from 37.
x^{2}-37x+50=\left(x-\frac{\sqrt{1169}+37}{2}\right)\left(x-\frac{37-\sqrt{1169}}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{37+\sqrt{1169}}{2} for x_{1} and \frac{37-\sqrt{1169}}{2} for x_{2}.