Solve for x
x=\frac{\sqrt{4049}+7}{100}\approx 0.706317531
x=\frac{7-\sqrt{4049}}{100}\approx -0.566317531
Graph
Share
Copied to clipboard
50x^{2}-7x-10=10
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
50x^{2}-7x-10-10=10-10
Subtract 10 from both sides of the equation.
50x^{2}-7x-10-10=0
Subtracting 10 from itself leaves 0.
50x^{2}-7x-20=0
Subtract 10 from -10.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 50\left(-20\right)}}{2\times 50}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 50 for a, -7 for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 50\left(-20\right)}}{2\times 50}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49-200\left(-20\right)}}{2\times 50}
Multiply -4 times 50.
x=\frac{-\left(-7\right)±\sqrt{49+4000}}{2\times 50}
Multiply -200 times -20.
x=\frac{-\left(-7\right)±\sqrt{4049}}{2\times 50}
Add 49 to 4000.
x=\frac{7±\sqrt{4049}}{2\times 50}
The opposite of -7 is 7.
x=\frac{7±\sqrt{4049}}{100}
Multiply 2 times 50.
x=\frac{\sqrt{4049}+7}{100}
Now solve the equation x=\frac{7±\sqrt{4049}}{100} when ± is plus. Add 7 to \sqrt{4049}.
x=\frac{7-\sqrt{4049}}{100}
Now solve the equation x=\frac{7±\sqrt{4049}}{100} when ± is minus. Subtract \sqrt{4049} from 7.
x=\frac{\sqrt{4049}+7}{100} x=\frac{7-\sqrt{4049}}{100}
The equation is now solved.
50x^{2}-7x-10=10
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
50x^{2}-7x-10-\left(-10\right)=10-\left(-10\right)
Add 10 to both sides of the equation.
50x^{2}-7x=10-\left(-10\right)
Subtracting -10 from itself leaves 0.
50x^{2}-7x=20
Subtract -10 from 10.
\frac{50x^{2}-7x}{50}=\frac{20}{50}
Divide both sides by 50.
x^{2}-\frac{7}{50}x=\frac{20}{50}
Dividing by 50 undoes the multiplication by 50.
x^{2}-\frac{7}{50}x=\frac{2}{5}
Reduce the fraction \frac{20}{50} to lowest terms by extracting and canceling out 10.
x^{2}-\frac{7}{50}x+\left(-\frac{7}{100}\right)^{2}=\frac{2}{5}+\left(-\frac{7}{100}\right)^{2}
Divide -\frac{7}{50}, the coefficient of the x term, by 2 to get -\frac{7}{100}. Then add the square of -\frac{7}{100} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{50}x+\frac{49}{10000}=\frac{2}{5}+\frac{49}{10000}
Square -\frac{7}{100} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{50}x+\frac{49}{10000}=\frac{4049}{10000}
Add \frac{2}{5} to \frac{49}{10000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{100}\right)^{2}=\frac{4049}{10000}
Factor x^{2}-\frac{7}{50}x+\frac{49}{10000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{100}\right)^{2}}=\sqrt{\frac{4049}{10000}}
Take the square root of both sides of the equation.
x-\frac{7}{100}=\frac{\sqrt{4049}}{100} x-\frac{7}{100}=-\frac{\sqrt{4049}}{100}
Simplify.
x=\frac{\sqrt{4049}+7}{100} x=\frac{7-\sqrt{4049}}{100}
Add \frac{7}{100} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}